Image Acquisition Toolbox™
User’s Guide

R2011b

) MathWorks

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Image Acquisition Toolbox™ User’s Guide
© COPYRIGHT 2003-2011 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

March 2003
September 2003
June 2004

July 2004
October 2004
March 2005
March 2005
August 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011

First printing
Online only
Online only
Online only
Online only
Online only
Second printing
Third printing
Online only
Fourth printing
Online only
Online only
Fifth printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 13+)
Revised for Version 1.1 (Release 13SP1)
Revised for Version 1.5 (Release 14)
Revised for Version 1.6 (Release 14+)
Revised for Version 1.7 (Release 14SP1)
Revised for Version 1.8 (Release 14SP2)
Minor Revision for Version 1.8

Minor Revision for Version 1.8

Revised for Version 1.9 (Release 14SP3)
Revised for Version 1.10 (Release 2006a)
Revised for Version 2.0 (Release 2006b)
Revised for Version 2.1 (Release 2007a)
Revised for Version 3.0 (Release 2007b)
Revised for Version 3.1 (Release 2008a)
Revised for Version 3.2 (Release 2008b)
Revised for Version 3.3 (Release 2009a)
Revised for Version 3.4 (Release 2009b)
Revised for Version 3.5 (Release 2010a)
Revised for Version 4.0 (Release 2010b)
Revised for Version 4.1 (Release 2011a)
Revised for Version 4.2 (Release 2011b)

Getting Started

2

Product Overviewcciiiiiiiiuennnnn.. 1-2
Introduction 1-2
Installation and Configuration Notes 1-3
The Image Processing Toolbox Software Required to Use

the Image Acquisition Toolbox Software 1-3
Related Products 0., 1-4
Supported Hardwareciiiuo.... 14
Viewing Demosttt 1-4

Image Acquisition Tool (GUI) 1-5

Basic Image Acquisition Procedure 1-6
OVeIVIBW o ittt ettt ettt e e e 1-6
Step 1: Install Your Image Acquisition Device 1-7
Step 2: Retrieve Hardware Information 1-8
Step 3: Create a Video Input Object 1-10
Step 4: Preview the Video Stream (Optional) 1-12
Step 5: Configure Object Properties (Optional) 1-14
Step 6: Acquire ImageData 1-17
Step7: Clean Up ...ttt e iie e 1-21

Introduction

Toolbox Components Overview 2-2
Introduction i i 2-2
Toolbox Componentsouuiiiieennnnnnnnnn. 2-3
The Image Processing Toolbox Software Required to Use

the Image Acquisition Toolbox Software 2-4
The Image Acquisition Tool (GUI) 2-5
Supported Devicesiiiiiii, 2-5

vi

Contents

Setting Up Image Acquisition Hardware
Introduction i i
Setting Up Frame Grabbers
Setting Up Generic Windows Video Acquisition Devices
Setting Up DCAM Devicescoviiiinnineennn..
Resetting Your Image Acquisition Hardware
A Note About Frame Rates and Processing Speed

PreviewingData
Introduction i i
Opening a Video Preview Window
Stopping the Preview Video Stream
Closing a Video Preview Window
Previewing Data in Custom GUIs
Performing Custom Processing of Previewed Data

Using the Image Acquisition Tool GUI

The Image Acquisition Tool Desktop
Openingthe Tool i,
Partsof the Desktopccoiiiiinnn.

Getting Started with the Image Acquisition Tool

Selecting Your Device in the Image Acquisition Tool ..
Selecting a Device and Format

Adding New Hardware
UsingaCameraFile

Setting Acquisition Parameters in the Image
AcquisitionTool
Using the Acquisition Parameters Pane
Setting Frames Per Triggerc.cc ...
Setting the Color Spacecciiiiiiinieen..
Setting Device-Specific Parameters
Logging YourData
Setting Up Triggeringciiiiiinenneeennnn.
Setting a Region of Interest

3-2
3-2
3-2

3-5

Restoring Default Parameters 3-29

Previewing and Acquiring Data in the Image

AcquisitionTool 3-30
The Preview Window 3-30
PreviewingData i, 3-32
Acquiring Data e 3-33
Exporting Data in the Image Acquisition Tool 3-37
Saving Image Acquisition Tool Configurations 3-41

Exporting Image Acquisition Tool Hardware
Configurationsto MATLAB 3-43

Saving and Copying the Image Acquisition Tool Session

Log .. 3-45
About the SessionLog 3-45
Saving the SessionLog 3-45
Copyingthe SessionLog 3-46

Registering a Third-Party Adaptor in the Image
AcquisitionTool 3-48

Connecting to Hardware

4

Getting Hardware Information 4-2
Getting Hardware Information 4-2
Determining the Device Adaptor Name 4-2
Determining the DeviceID 4-3
Determining Supported Video Formats 4-5

Creating Image Acquisition Objects 4-8
Typesof Objects ...ttt 4-8
Video Input Objects, 4-8
Video Source Objectscciiiiiiiiiiinnnn. 4-8

vii

viii

Contents

Creating a Video Input Object 4-9

Specifying the Video Format 4-11
Specifying the Selected Video Source Object 4-14
Getting Information About a Video Input Object 4-15
Configuring Image Acquisition Object Properties 4-16
About Image Acquisition Object Properties 4-16
Viewing the Values of Object Properties 4-17
Viewing the Value of a Particular Property 4-19
Getting Information About Object Properties 4-20
Setting the Value of an Object Property 4-20
Starting and Stopping a Video Input Object 4-23
Deleting Image Acquisition Objects 4-27
Saving Image Acquisition Objects 4-29
Using the save Command 4-29
Using the obj2mfile Command 4-29

Acquiring Image Data

5

DataLogging, 5-2
L0 =) T 1= 5-2
Trigger Propertiescouuiiiiiiinnnnn. 5-3

Setting the Values of Trigger Properties 5-5
About Trigger Propertiescccuiiiio... .. 5-5
Specifying Trigger Type, Source, and Condition 5-5

Specifying the Trigger Type 5-8
Comparison of Trigger Typescoiiiiiueeeeo... 5-8
Example: Using an Immediate Trigger 5-9
Example: Using a Manual Trigger 5-12
Example: Using a Hardware Trigger 5-14
Setting DCAM-Specific Trigger Modes 5-18

Controlling Logging Parameters 5-25

DataLogging 5-25
Specifying Logging Mode, 5-25
Specifying the Number of FramestoLog 5-26
Determining How Much Data Has Been Logged 5-28
Determining How Many Frames Are Available 5-30
Delaying Data Logging After a Trigger 5-33
Specifying Multiple Triggersc.ccviiiiuee... 5-34
Waiting for an Acquisition to Finish 5-36
Using the wait Function 5-36
Example: Blocking the Command Line Until an Acquisition
Completes ..o e 5-37
Managing Memory Usage 5-40
Memory Usage . ..ovviinnn ittt 5-40
Monitoring Memory Usagecciiiiuninn... 5-40
Modifying the Frame Memory Limit 5-41
Freeing Memorycciiiiiiieeinnnnnnnnnnn. 5-42
Logging Image DatatoDisk 5-45
Logging Data to Disk Using VideoWriter 5-45
Example: Logging Data to Disk Using VideoWriter 5-46
Logging Data to Disk Usingan AVI File 5-47
Creating an AVI File Object for Logging 5-49
Example: Logging Data to Disk Using an AVI File 5-51

Working with Acquired Image Data

6

Image Acquisition Overview 6-2

Bringing Image Data into the MATLAB Workspace ... 6-3

OVEIVIEW & ittt ettt et e e e 6-3
Moving Multiple Frames into the Workspace 6-4
Viewing Frames in the Memory Buffer 6-6
Bringing a Single Frame into the Workspace 6-10

ix

X

Contents

Working with Image Data in the MATLAB

7

Workspace it 6-12
Understanding Image Data 6-12
Determining the Dimensions of Image Data 6-13
Determining the Data Type of Image Frames 6-16
Specifying the Color Spacecccviiiie... 6-17
Viewing Acquired Datacc0iiiinn... 6-19
Retrieving Timing Information 6-20
Introduction i i 6-20
Determining When a Trigger Executed 6-20
Determining When a Frame Was Acquired 6-21
Example: Determining the Frame Delay Duration 6-22
Using Events and Callbacks

Using the Default Callback Function 7-2
Event Types i 7-4
Retrieving Event Information 7-7
Introduction i i 7-7
Event Structures 7-7
Example: Accessing Data in the Event Log 7-9
Creating and Executing Callback Functions 7-12
Introduction i 7-12
Creating Callback Functions 7-12
Specifying Callback Functions 7-14
Example: Viewing a Sample Frame 7-16
Example: Monitoring Memory Usage 7-17

Using the From Video Device Block in Simulink

8

Simulink Image Acquisition Overview 8-2
Opening the Block Library 8-3
Using the imaqlib Command 8-3
Using the Simulink Library Browser 8-3
Using Code Generation 8-5
Saving Video DatatoaFile 8-6
Introduction 8-6
Step 1: Open the Image Acquisition Toolbox Library 8-6
Step 2: Open a Model or Create a New Model 8-7
Step 3: Drag the From Video Device Block into the
Model e 8-8
Step 4: Drag Other Blocks to Complete the Model 8-9
Step 5: Connect the Blocks 8-10
Step 6: Specify From Video Device Block Parameter
Values e 8-11
Step 7: Run the Simulation 8-13

Configuring GigE Vision Devices

9

Typesof Setups 9-2
Network Hardware Configuration Notes 9-3
Installation of GigE Vision Cameras and Drivers 9-4
Network Adaptor Configuration Notes 9-6
Windowso e 9-6
U . e 9-6
Mac .. e 9-7

xi

xii

Contents

Software Configuration 9-12
Setting Preferences 9-19

Troubleshooting, 9-21

Adding Support for Additional Hardware

10

Support for Additional Hardware 10-2
Troubleshooting
Troubleshooting Overview 11-2
DALSA Coreco IFC Hardware 11-3
Troubleshooting DALSA Coreco IFC Devices 11-3
Determining the Driver Version for DALSA Coreco IFC
Devices ... e 11-4
DALSA Coreco Sapera Hardware 11-5
Troubleshooting DALSA Coreco Sapera Devices 11-5
Determining the Driver Version for DALSA Coreco Sapera
Devices ... e e 11-6
Data Translation Hardware 11-7
DCAM IEEE 1394 (FireWire) Hardware on Windows .. 11-8
Troubleshooting DCAM IEEE 1394 Hardware on
Windows ... i 11-8
Installing the CMU DCAM Driver on Windows 11-9
Running the CMU Camera Demo Application on
Windows e 11-11

Hamamatsu Hardware 11-15

Matrox Hardwarettt 11-16
Troubleshooting Matrox Devices 11-16
Determining the Driver Version for Matrox Devices 11-17

QImaging Hardware, 11-18
Troubleshooting QImaging Devices 11-18
Determining the Driver Version for QImaging Devices ... 11-19

National Instruments Hardware 11-20
Troubleshooting National Instruments Devices 11-20
Determining the Driver Version for National Instruments

Devices ... e 11-21

GigE Vision Hardware 11-22
Troubleshooting GigE Vision Devices on Windows 11-22
Troubleshooting GigE Vision Devices on Linux 11-25
Troubleshooting GigE Vision Deviceson Mac 11-27

Windows Video Hardware 11-30
Troubleshooting Windows Video Devices 11-30
Determining the Microsoft DirectX Version 11-31

Linux Video Hardware 11-33
Troubleshooting Linux Video Devices 11-33

Linux DCAM IEEE 1394 Hardware 11-35
Troubleshooting Linux DCAM Devices 11-35

Macintosh Video Hardware 11-36
Troubleshooting Macintosh Video Devices 11-36

Macintosh DCAM IEEE 1394 Hardware 11-37
Troubleshooting Macintosh DCAM Devices 11-37

Video Preview Window Troubleshooting 11-38

xiii

xiv

Contacting MathWorks and Using the imaqsupport
Function 11-39

12

General-Purpose Objects 12-2
Triggering i 12-3
Data 12-3
Tools ... i e 12-4
Getting Command-Line Function Help 12-5

Functions — Alphabetical List

13

Property Reference

14

Contents

Video Input Objects, 14-2
General 14-2
Callback e e 14-3
B ==y oV 14-4
Acquisition SOUXCettt 14-5

Video Source Objects, 14-6

Properties — Alphabetical List

15

Block Reference

16/

A

Examples

Fundamentals A-2
Previewing i i A-2
Image Acquisition Tool (GUI) A-2
AcquiringImage Data A-3
Working with Acquired Data A-3
Events and Callbacks A-3
Index

XV

xvi Contents

Getting Started

The best way to learn about Image Acquisition Toolbox™ capabilities is to
look at a simple example. This chapter introduces the toolbox and illustrates
the basic steps to create an image acquisition application by implementing

a simple motion detection application. The example cross-references other
sections that provide more details about relevant concepts.

® “Product Overview” on page 1-2
¢ “‘Image Acquisition Tool (GUI)” on page 1-5

® “Basic Image Acquisition Procedure” on page 1-6

1 Getting Started

Product Overview

In this section...

“Introduction” on page 1-2
“Installation and Configuration Notes” on page 1-3

“The Image Processing Toolbox Software Required to Use the Image
Acquisition Toolbox Software” on page 1-3

“Related Products” on page 1-4
“Supported Hardware” on page 1-4

“Viewing Demos” on page 1-4

Introduction

The Image Acquisition Toolbox software is a collection of functions that
extend the capability of the MATLAB® numeric computing environment. The
toolbox supports a wide range of image acquisition operations, including:

¢ Acquiring images through many types of image acquisition devices, from
professional grade frame grabbers to USB-based webcams

Viewing a preview of the live video stream

® Triggering acquisitions (includes external hardware triggers)

¢ Configuring callback functions that execute when certain events occur
¢ Bringing the image data into the MATLAB workspace

Many of the toolbox functions are MATLAB files. You can view the MATLAB
code for these functions using this statement:

type function_name

You can extend Image Acquisition Toolbox capabilities by writing your own
MATLAB files, or by using the toolbox in combination with other toolboxes,
such as the Image Processing Toolbox™ software and the Data Acquisition
Toolbox™ software.

Product Overview

The Image Acquisition Toolbox software also includes a Simulink® block,
called From Video Device, that you can use to bring live video data into
a model.

Installation and Configuration Notes

To determine if the Image Acquisition Toolbox software is installed on your
system, type this command at the MATLAB prompt:

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

For information about installing the toolbox, see the MATLAB Installation
Guide.

For the most up-to-date information about system requirements, see the
system requirements page, available in the products area at the MathWorks
Web site (www.mathworks.com).

The Image Processing Toolbox Software Required to
Use the Image Acquisition Toolbox Software

The Image Acquisition Toolbox product, including the Image Acquisition
Tool, now requires you to have a license for the Image Processing Toolbox
product starting in R2008b.

If you already have the Image Processing Toolbox product, you do not need to
do anything.

If you do not have the Image Processing Toolbox product, the Image
Acquisition Toolbox software R2008a and earlier will continue to work. If you
want to use R2008Db or future releases, and you have a current active license
for the Image Acquisition Toolbox software, you can download the Image
Processing Toolbox product for free. New customers will need to purchase
both products to use the Image Acquisition Toolbox product.

If you have any questions, please contact MathWorks customer service.

http://www.mathworks.com

1 Getting Started

Related Products

MathWorks provides several products that are relevant to the kinds of tasks
you can perform with the Image Acquisition Toolbox software and that extend
the capabilities of MATLAB. For information about these related products,
see www.mathworks.com/products/imaq/related.html.

Supported Hardware

The list of hardware that the Image Acquisition Toolbox software supports
can change in each release, since hardware support is frequently added. The
MathWorks Web site is the best place to check for the most up to date listing.

To see the full list of hardware that the toolbox supports, visit the

Image Acquisition Toolbox product page at the MathWorks Web site

www . mathworks.com/products/imaq and click the Supported Hardware
link.

Viewing Demos

Demos are available that cover many areas of the Image Acquisition Toolbox
functionality.

To view the demos, open the product documentation using the doc command
or the Help icon in the MATLAB toolbar. Then under Image Acquisition
Toolbox in the navigation pane, select Demos.

http://www.mathworks.com/products/imaq/related.html
http://www.mathworks.com/products/imaq

Image Acquisition Tool (GUI)

Image Acquisition Tool (GUI)

In Version 3.0 of the toolbox, the functionality of the Image Acquisition
Toolbox software is available in a desktop application. You connect directly to
your hardware in the tool and can set acquisition parameters, and preview
and acquire image data. You can log the data to MATLAB in several formats,
and also generate an AVI file, right from the tool.

To open the tool, select Start > Toolboxes > Image Acquisition > Image
Acquisition Tool from MATLAB. The tool has extensive Help in the desktop.
As you click in different panes of the user interface, the relevant Help appears
in the Image Acquisition Tool Help pane.

Most of the User’s Guide describes performing tasks using the toolbox via the
MATLAB command line. To learn how to use the desktop tool, see Chapter 3,
“Using the Image Acquisition Tool GUI”.

1 Getting Started

Basic Image Acquisition Procedure

1-6

In this section...

“Overview” on page 1-6

“Step 1: Install Your Image Acquisition Device” on page 1-7
“Step 2: Retrieve Hardware Information” on page 1-8

“Step 3: Create a Video Input Object” on page 1-10

“Step 4: Preview the Video Stream (Optional)” on page 1-12
“Step 5: Configure Object Properties (Optional)” on page 1-14
“Step 6: Acquire Image Data” on page 1-17

“Step 7: Clean Up” on page 1-21

Overview

This section illustrates the basic steps required to create an image acquisition
application by implementing a simple motion detection application. The
application detects movement in a scene by performing a pixel-to-pixel
comparison in pairs of incoming image frames. If nothing moves in the scene,
pixel values remain the same in each frame. When something moves in the
image, the application displays the pixels that have changed values.

The example highlights how you can use the Image Acquisition Toolbox
software to create a working image acquisition application with only a few
lines of code.

Note To run the sample code in this example, you must have an image
acquisition device connected to your system. The device can be a professional
grade image acquisition device, such as a frame grabber, or a generic
Microsoft® Windows® image acquisition device, such as a webcam. The code
can be used with various types of devices with only minor changes.

Basic Image Acquisition Procedure

To use the Image Acquisition Toolbox software to acquire image data, you
must perform the following basic steps.

Step Description

Step 1: Install and configure your image acquisition device

Step 2: Retrieve information that uniquely identifies your image
acquisition device to the Image Acquisition Toolbox software

Step 3: Create a video input object

Step 4: Preview the video stream (Optional)

Step 5: Configure image acquisition object properties (Optional)

Step 6: Acquire image data

Step 7: Clean up

Step 1: Install Your Image Acquisition Device

Follow the setup instructions that come with your image acquisition device.
Setup typically involves:

¢ Installing the frame grabber board in your computer.

¢ Installing any software drivers required by the device. These are supplied
by the device vendor.

® Connecting a camera to a connector on the frame grabber board.

® Verifying that the camera is working properly by running the application
software that came with the camera and viewing a live video stream.

Generic Windows image acquisition devices, such as webcams and digital
video camcorders, typically do not require the installation of a frame grabber
board. You connect these devices directly to your computer via a USB or
FireWire port.

After installing and configuring your image acquisition hardware, start
MATLAB on your computer by double-clicking the icon on your desktop. You
do not need to perform any special configuration of MATLAB to perform
image acquisition.

1-7

1 Getting Started

1-8

Step 2: Retrieve Hardware Information

In this step, you get several pieces of information that the toolbox needs to
uniquely identify the image acquisition device you want to access. You use
this information when you create an image acquisition object, described in
“Step 3: Create a Video Input Object” on page 1-10.

The following table lists this information. You use the imaghwinfo function
to retrieve each item.

Device
Information

Description

Adaptor name

An adaptor is the software that the toolbox uses to
communicate with an image acquisition device via its
device driver. The toolbox includes adaptors for certain
vendors of image acquisition equipment and for particular
classes of image acquisition devices. See “Determining the
Adaptor Name” on page 1-9 for more information.

Device ID

The device ID is a number that the adaptor assigns to
uniquely identify each image acquisition device with which
it can communicate. See “Determining the Device ID” on
page 1-9 for more information.

Note Specifying the device ID is optional; the toolbox
uses the first available device ID as the default.

Video format

The video format specifies the image resolution (width
and height) and other aspects of the video stream. Image
acquisition devices typically support multiple video
formats. See “Determining the Supported Video Formats”
on page 1-10 for more information.

Note Specifying the video format is optional; the toolbox
uses one of the supported formats as the default.

Basic Image Acquisition Procedure

Determining the Adaptor Name

To determine the name of the adaptor, enter the imaghwinfo function at the
MATLAB prompt without any arguments.

imaghwinfo
ans =

InstalledAdaptors: {'dcam' ‘'winvideo'}
MATLABVersion: '7.4 (R2007a)'
ToolboxName: 'Image Acquisition Toolbox'
ToolboxVersion: '2.1 (R2007a)'

In the data returned by imaghwinfo, the InstalledAdaptors field lists the
adaptors that are available on your computer. In this example, imaghwinfo
found two adaptors available on the computer: 'dcam' and 'winvideo'. The
listing on your computer might contain only one adaptor name. Select the
adaptor name that provides access to your image acquisition device. For more
information, see “Determining the Device Adaptor Name” on page 4-2.

Determining the Device ID

To find the device ID of a particular image acquisition device, enter the
imaghwinfo function at the MATLAB prompt, specifying the name of the
adaptor as the only argument. (You found the adaptor name in the first call to
imaghwinfo, described in “Determining the Adaptor Name” on page 1-9.) In
the data returned, the DevicelDs field is a cell array containing the device
IDs of all the devices accessible through the specified adaptor.

Note This example uses the DCAM adaptor. You should substitute the name
of the adaptor you would like to use.

info
info

imaghwinfo('dcam')

AdaptorDl1lName: [1x77 char]
AdaptorDllVersion: '2.1 (R2007a)'
AdaptorName: 'dcam'
DeviceIDs: {[1]}

1-9

1 Getting Started

1-10

DevicelInfo: [1x1 struct]

Determining the Supported Video Formats

To determine which video formats an image acquisition device supports, look
in the DeviceInfo field of the data returned by imaghwinfo. The DeviceInfo
field is a structure array where each structure provides information about a
particular device. To view the device information for a particular device, you
can use the device ID as a reference into the structure array. Alternatively,
you can view the information for a particular device by calling the imaghwinfo
function, specifying the adaptor name and device ID as arguments.

To get the list of the video formats supported by a device, look at
SupportedFormats field in the device information structure. The
SupportedFormats field is a cell array of strings where each string is the
name of a video format supported by the device. For more information, see
“Determining Supported Video Formats” on page 4-5.

dev_info imaghwinfo('dcam',1)

dev_info

DefaultFormat: 'F7_Y8_1024x768'
DeviceFileSupported: 0
DeviceName: 'XCD-X700 1.05'
DevicelID: 1
ObjectConstructor: 'videoinput('dcam', 1)'
SupportedFormats: {'F7_Y8_ 1024x768' 'Y8_ 1024x768'}

Step 3: Create a Video Input Object

In this step you create the video input object that the toolbox uses to represent
the connection between MATLAB and an image acquisition device. Using the
properties of a video input object, you can control many aspects of the image
acquisition process. For more information about image acquisition objects, see
Chapter 4, “Connecting to Hardware”.

To create a video input object, use the videoinput function at the MATLAB
prompt. The DeviceInfo structure returned by the imaghwinfo function
contains the default videoinput function syntax for a device in the

Basic Image Acquisition Procedure

ObjectConstructor field. For more information the device information
structure, see “Determining the Supported Video Formats” on page 1-10.

The following example creates a video input object for the DCAM adaptor.
Substitute the adaptor name of the image acquisition device available on
your system.

vid = videoinput('dcam',1,'Y8_1024x768")

The videoinput function accepts three arguments: the adaptor name,
device ID, and video format. You retrieved this information in step 2. The
adaptor name is the only required argument; the videoinput function can
use defaults for the device ID and video format. To determine the default
video format, look at the DefaultFormat field in the device information
structure. See “Determining the Supported Video Formats” on page 1-10
for more information.

Instead of specifying the video format, you can optionally specify the name of
a device configuration file, also known as a camera file. Device configuration
files are typically supplied by frame grabber vendors. These files contain

all the required configuration settings to use a particular camera with the
device. See “Using Device Configuration Files (Camera Files)” on page 4-13
for more information.

Viewing the Video Input Object Summary

To view a summary of the video input object you just created, enter the
variable name (vid) at the MATLAB command prompt. The summary
information displayed shows many of the characteristics of the object, such
as the number of frames that will be captured with each trigger, the trigger
type, and the current state of the object. You can use video input object
properties to control many of these characteristics. See “Step 5: Configure
Object Properties (Optional)” on page 1-14 for more information.

vid
Summary of Video Input Object Using 'XCD-X700 1.05'.
Acquisition Source(s): inputl is available.

Acquisition Parameters: ‘'inputil' is the current selected source.

1-11

1 Getting Started

1-12

10 frames per trigger using the selected source.
'Y8_1024x768' video data to be logged upon START.
Grabbing first of every 1 frame(s).

Log data to 'memory' on trigger.

Trigger Parameters: 1 'immediate' trigger(s) on START.
Status: Waiting for START.
0 frames acquired since starting.
0 frames available for GETDATA.

Step 4: Preview the Video Stream (Optional)

After you create the video input object, MATLAB is able to access the image
acquisition device and is ready to acquire data. However, before you begin,
you might want to see a preview of the video stream to make sure that the
image is satisfactory. For example, you might want to change the position
of the camera, change the lighting, correct the focus, or make some other
change to your image acquisition setup.

Note This step is optional at this point in the procedure because you can
preview a video stream at any time after you create a video input object.

To preview the video stream in this example, enter the preview function
at the MATLAB prompt, specifying the video input object created in step 3
as an argument.

preview(vid)

The preview function opens a Video Preview figure window on your screen
containing the live video stream. To stop the stream of live video, you can
call the stoppreview function. To restart the preview stream, call preview
again on the same video input object.

While a preview window is open, the video input object sets the value of the
Previewing property to 'on'. If you change characteristics of the image
by setting image acquisition object properties, the image displayed in the
preview window reflects the change.

Basic Image Acquisition Procedure

The following figure shows the Video Preview window for the example.

=10l x|

-

J ¥ideo Preview - dcami:l

Adapior name and
device ID

livevideo mage o

Timestamp of
current frame !
being displayed —— W= 142051910 | 1024x768 ||vWatting for START. |
Resolution —f L State of the video
input object

Video Preview Window

To close the Video Preview window, click the Close button in the title bar
or use the closepreview function, specifying the video input object as an
argument.

closepreview(vid)

Calling closepreview without any arguments closes all open Video Preview
windows.

1-13

1 Getting Started

1-14

Step 5: Configure Object Properties (Optional)

After creating the video input object and previewing the video stream, you
might want to modify characteristics of the image or other aspects of the
acquisition process. You accomplish this by setting the values of image
acquisition object properties. This section

¢ Describes the types of image acquisition objects used by the toolbox

® Describes how to view all the properties supported by these objects, with
their current values

¢ Describes how to set the values of object properties

Types of Image Acquisition Objects

The toolbox uses two types of objects to represent the connection with an
image acquisition device:

® Video input objects

® Video source objects

A video input object represents the connection between MATLAB and a video
acquisition device at a high level. The properties supported by the video input
object are the same for every type of device. You created a video input object
using the videoinput function in step 3.

When you create a video input object, the toolbox automatically creates one or
more video source objects associated with the video input object. Each video
source object represents a collection of one or more physical data sources that
are treated as a single entity. The number of video source objects the toolbox
creates depends on the device and the video format you specify. At any one
time, only one of the video source objects, called the selected source, can be
active. This is the source used for acquisition. For more information about
these image acquisition objects, see “Creating Image Acquisition Objects”

on page 4-8.

Viewing Obiject Properties

To view a complete list of all the properties supported by a video input object
or a video source object, use the get function. To list the properties of the
video input object created in step 3, enter this code at the MATLAB prompt.

Basic Image Acquisition Procedure

get(vid)
The get function lists all the properties of the object with their current values.

General Settings:
DeviceID = 1
DiskLogger = []
DiskLoggerFrameCount = 0
EventLog = [1x0 struct]
FrameGrabInterval = 1
FramesAcquired = 0
FramesAvailable = 0
FramesPerTrigger = 10
Logging = off
LoggingMode = memory
Name = Y8_1024x768-dcam-1
NumberOfBands = 1
Previewing = on
ReturnedColorSpace = grayscale
ROIPosition = [0 O 1024 768]
Running = off
Tag =
Timeout = 10
Type = videoinput
UserData = []
VideoFormat = Y8_1024x768
VideoResolution = [1024 768]

To view the properties of the currently selected video source object associated
with this video input object, use the getselectedsource function in
conjunction with the get function. The getselectedsource function returns
the currently active video source. To list the properties of the currently
selected video source object associated with the video input object created in
step 3, enter this code at the MATLAB prompt.

get(getselectedsource(vid))

The get function lists all the properties of the object with their current values.

1-15

1 Getting Started

1-16

Note Video source object properties are device specific. The list of properties
supported by the device connected to your system might differ from the list
shown in this example.

General Settings:
Parent = [1x1 videoinput]
Selected = on
SourceName = inputi
Tag =
Type = videosource

Device Specific Properties:
FrameRate = 15
Gain = 2048
Shutter = 2715

Setting Object Properties

To set the value of a video input object property or a video source object
property, you can use the set function or you can reference the object property
as you would a field in a structure, using dot notation.

Some properties are read only; you cannot set their values. These properties
typically provide information about the state of the object. Other properties
become read only when the object is running. To view a list of all the
properties you can set, use the set function, specifying the object as the
only argument.

To implement continuous image acquisition, the example sets the
TriggerRepeat property to Inf. To set this property using the set function,
enter this code at the MATLAB prompt.

set(vid, 'TriggerRepeat',Inf);

To help the application keep up with the incoming video stream while
processing data, the example sets the FrameGrabInterval property to 5. This
specifies that the object acquire every fifth frame in the video stream. (You
might need to experiment with the value of the FrameGrabInterval property
to find a value that provides the best response with your image acquisition

Basic Image Acquisition Procedure

setup.) This example shows how you can set the value of an object property
by referencing the property as you would reference a field in a MATLAB
structure.

vid.FrameGrabInterval = 5;

To set the value of a video source object property, you must first use the
getselectedsource function to retrieve the object. (You can also get the
selected source by searching the video input object Source property for the
video source object that has the Selected property set to 'on"'.)

To illustrate, the example assigns a value to the Tag property.

vid_src = getselectedsource(vid);

set(vid_src, 'Tag', 'motion detection setup');

Step 6: Acquire Image Data

After you create the video input object and configure its properties, you can
acquire data. This is typically the core of any image acquisition application,
and it involves these steps:

e Starting the video input object — You start an object by calling the
start function. Starting an object prepares the object for data acquisition.
For example, starting an object locks the values of certain object properties
(they become read only). Starting an object does not initiate the acquiring
of image frames, however. The initiation of data logging depends on the
execution of a trigger.

The following example calls the start function to start the video input
object. Objects stop when they have acquired the requested number of
frames. Because the example specifies a continuous acquisition, you must
call the stop function to stop the object.

¢ Triggering the acquisition — To acquire data, a video input object must
execute a trigger. Triggers can occur in several ways, depending on how
the TriggerType property is configured. For example, if you specify an
immediate trigger, the object executes a trigger automatically, immediately
after it starts. If you specify a manual trigger, the object waits for a call
to the trigger function before it initiates data acquisition. For more
information, see Chapter 5, “Acquiring Image Data”.

1-17

1 Getting Started

1-18

In the example, because the TriggerType property is set to ' immediate'
(the default) and the TriggerRepeat property is set to Inf, the object
automatically begins executing triggers and acquiring frames of data,
continuously.

* Bringing data into the MATLAB workspace — The toolbox stores
acquired data in a memory buffer, a disk file, or both, depending on the
value of the video input object LoggingMode property. To work with this
data, you must bring it into the MATLAB workspace. To bring multiple
frames into the workspace, use the getdata function. Once the data is in
the MATLAB workspace, you can manipulate it as you would any other
data. For more information, see Chapter 6, “Working with Acquired Image
Data”.

Note The toolbox provides a convenient way to acquire a single frame of
image data that doesn’t require starting or triggering the object. See “Bringing
a Single Frame into the Workspace” on page 6-10 for more information.

Running the Example

To run the example, enter the following code at the MATLAB prompt. The
example loops until a specified number of frames have been acquired. In each
loop iteration, the example calls getdata to bring the two most recent frames
into the MATLAB workspace. To detect motion, the example subtracts one
frame from the other, creating a difference image, and then displays it. Pixels
that have changed values in the acquired frames will have nonzero values in
the difference image.

The getdata function removes frames from the memory buffer when it brings
them into the MATLAB workspace. It is important to move frames from the
memory buffer into the MATLAB workspace in a timely manner. If you do
not move the acquired frames from memory, you can quickly exhaust all the
memory available on your system.

Note The example uses functions in the Image Processing Toolbox software.

% Create video input object.

Basic Image Acquisition Procedure

vid = videoinput('dcam',1,'Y8_1024x768")

% Set video input object properties for this application.

% Note that example uses both SET method and dot notation method.
set(vid, 'TriggerRepeat',Inf);

vid.FrameGrabInterval = 5;

% Set value of a video source object property.
vid_src = getselectedsource(vid);
set(vid_src, 'Tag', 'motion detection setup');

% Create a figure window.
figure;

% Start acquiring frames.
start(vid)

% Calculate difference image and display it.

while(vid.FramesAcquired<=100) % Stop after 100 frames
data = getdata(vid,2);
diff_im = imabsdiff(data(:,:,:,1),data(:,:,:,2));
imshow(diff_im);

end

stop(vid)

1-19

1 Getting Started

1-20

The following figure shows how the example displays detected motion. In the
figure, areas representing movement are displayed.

-ioix

File Edit WYiew Insert Tools Window Help

Deda "A A/ | @20

Figure Window Displayed by Example

Image Data in the MATLAB Workspace

In the example, the getdata function returns the image frames in the variable
data as a 480-by-640-by-1-by-10 array of 8-bit data (uint8).

whos
Name Size Bytes Class
data 4-D 3072000 uint8 array
dev_info 1x1 1601 struct array
info 1x1 2467 struct array
vid 1x1 1138 videoinput object
vid_src 1x1 726 videosource object

The height and width of the array are primarily determined by the video
resolution of the video format. However, you can use the ROIPosition
property to specify values that supersede the video resolution. Devices
typically express video resolution as column-by-row; MATLAB expresses
matrix dimensions as row-by-column.

Basic Image Acquisition Procedure

The third dimension represents the number of color bands in the image.
Because the example data is a grayscale image, the third dimension is 1. For
RGB formats, image frames have three bands: red is the first, green is the
second, and blue is the third. The fourth dimension represents the number of
frames that have been acquired from the video stream.

Step 7: Clean Up

When you finish using your image acquisition objects, you can remove them
from memory and clear the MATLAB workspace of the variables associated
with these objects.

delete(vid)
clear
close(gcf)

For more information, see “Deleting Image Acquisition Objects” on page 4-27.

1-21

1 Getting Started

1-22

Introduction

This chapter describes the Image Acquisition Toolbox software and its
components.

® “Toolbox Components Overview” on page 2-2

e “Setting Up Image Acquisition Hardware” on page 2-7

® “Previewing Data” on page 2-10

2 Introduction

Toolbox Components Overview

2-2

In this section...

“Introduction” on page 2-2
“Toolbox Components” on page 2-3

“The Image Processing Toolbox Software Required to Use the Image
Acquisition Toolbox Software” on page 2-4

“The Image Acquisition Tool (GUI)” on page 2-5
“Supported Devices” on page 2-5

Introduction

Image Acquisition Toolbox enables you to acquire images and video from
cameras and frame grabbers directly into MATLAB and Simulink. You can
detect hardware automatically, and configure hardware properties. Advanced
workflows let you trigger acquisitions while processing in-the-loop, perform
background acquisitions, and synchronize sampling across several multimodal
devices. With support for multiple hardware vendors and industry standards,
you can use imaging devices, ranging from inexpensive Web cameras to
high-end scientific and industrial devices that meet low-light, high-speed,
and other challenging requirements.

The Image Acquisition Toolbox software implements an object-oriented
approach to image acquisition. Using toolbox functions, you create an
object that represents the connection between MATLAB and specific image
acquisition devices. Using properties of the object you can control various
aspects of the acquisition process, such as the amount of video data you want
to capture. Chapter 4, “Connecting to Hardware” describes how to create
objects.

Once you establish a connection to a device, you can acquire image data by
executing a trigger. In the toolbox, all image acquisition is initiated by a
trigger. The toolbox supports several types of triggers that let you control
when an acquisition takes place. For example, using hardware triggers you
can synchronize an acquisition with an external device. Chapter 5, “Acquiring
Image Data” describes how to trigger the acquisition of image data.

Toolbox Components Overview

To work with the data you acquire, you must bring it into the MATLAB
workspace. When the frames are acquired, the toolbox stores them in a
memory buffer. The toolbox provides several ways to bring one or more frames
of data into the workspace where you can manipulate it as you would any
other multidimensional numeric array. Chapter 6, “Working with Acquired
Image Data” describes this process.

Finally, you can enhance your image acquisition application by using event
callbacks. The toolbox has defined certain occurrences, such as the triggering
of an acquisition, as events. You can associate the execution of a particular
function with a particular event. Chapter 7, “Using Events and Callbacks”
describes this process.

Toolbox Components

The toolbox uses components called hardware device adaptors to connect to
devices through their drivers. The toolbox includes adaptors that support
devices produced by several vendors of image acquisition equipment.

In addition, the toolbox includes an adaptor for generic Windows video
acquisition devices.

2-3

2 Introduction

The following figure shows these components and their relationship.

MATLAB

'

Image Acquisition Toalbax

M-file Functions

Hardware Driver Adaptar

L
[

Hardware Device Driver
|EEE 1304
[Fire¥ine)
ISR Frame b FireWire

Saurce Grabber Soure
[INENINNN]

The Image Acquisition Toolbox™ Software Components

The Image Processing Toolbox Software Required to
Use the Image Acquisition Toolbox Software

The Image Acquisition Toolbox product, including the Image Acquisition
Tool, now requires you to have a license for the Image Processing Toolbox
product starting in R2008b.

If you already have the Image Processing Toolbox product, you do not need to
do anything.

If you do not have the Image Processing Toolbox product, the Image
Acquisition Toolbox software R2008a and earlier will continue to work. If you
want to use R2008Db or future releases, and you have a current active license

Toolbox Components Overview

for the Image Acquisition Toolbox software, you can download the Image
Processing Toolbox product for free. New customers will need to purchase
both products to use the Image Acquisition Toolbox product.

If you have any questions, please contact MathWorks customer service.

The Image Acquisition Tool (GUI)

In Version 3.0 of the toolbox, the functionality of the Image Acquisition
Toolbox software is available in a desktop application. You connect directly
to your hardware in the tool and can then set acquisition parameters, and
preview and acquire image data. You can log the data to MATLAB in several
formats, and also generate an AVI file, right from the tool.

To open the tool, select Start > Toolboxes > Image Acquisition > Image
Acquisition Tool from MATLAB. The tool has extensive Help in the desktop.
As you click in different panes of the user interface, the relevant Help appears
in the Image Acquisition Tool Help pane.

Most of the User’s Guide describes performing tasks using the toolbox via the
MATLAB command line. To learn how to use the desktop tool, see Chapter 3,
“Using the Image Acquisition Tool GUI”.

Supported Devices

The Image Acquisition Toolbox software includes adaptors that provide
support for several vendors of professional grade image acquisition
equipment, devices that support the IIDC 1394-based Digital Camera
Specification (DCAM), and devices that provide Windows Driver Model
(WDM) or Video for Windows (VFW) drivers, such as USB and IEEE® 1394
(FireWire, 1.LINK®) Web cameras, Digital video (DV) camcorders, and TV
tuner cards. For the latest information about supported hardware, visit
the Image Acquisition Toolbox product page at the MathWorks Web site
(www.mathworks.com/products/imag).

The DCAM specification, developed by the 1394 Trade Association, describes
a generic interface for exchanging data with IEEE 1394 (FireWire) digital
cameras that is often used in scientific applications. The toolbox’s DCAM
adaptor supports Format 7, also known as partial scan mode. The toolbox
uses the prefix F7_ to identify Format 7 video format names.

http://www.mathworks.com/products/imaq

2 Introduction

Note The toolbox supports only connections to IEEE 1394 (FireWire)
DCAM-compliant devices using the Carnegie Mellon University DCAM
driver. The toolbox is not compatible with any other vendor-supplied driver,
even if the driver is DCAM compliant.

You can add support for additional hardware by writing an adaptor. For more
information, see Chapter 10, “Adding Support for Additional Hardware”.

Setting Up Image Acquisition Hardware

Setting Up Image Acquisition Hardware

In this section...

“Introduction” on page 2-7

“Setting Up Frame Grabbers” on page 2-7

“Setting Up Generic Windows Video Acquisition Devices” on page 2-8
“Setting Up DCAM Devices” on page 2-8

“Resetting Your Image Acquisition Hardware” on page 2-8

“A Note About Frame Rates and Processing Speed” on page 2-8

Introduction

To acquire image data, you must perform the setup required by your
particular image acquisition device. In a typical image acquisition setup,
an image acquisition device, such as a camera, is connected to a computer
via an image acquisition board, such as a frame grabber, or via a Universal
Serial Bus (USB) or IEEE 1394 (FireWire) port. The setup required varies
with the type of device.

After installing and configuring your image acquisition hardware, start
MATLAB on your computer by double-clicking the icon on your desktop. You
do not need to perform any special configuration of MATLAB to acquire data.

Setting Up Frame Grabbers

For frame grabbers, also known as imaging boards, setup typically involves
the following tasks:
¢ Installing the frame grabber in your computer

¢ Installing any software drivers required by the frame grabber. These are
supplied by the device vendor.

¢ Connecting the camera, or other image acquisition device, to a connector
on the frame grabber

¢ Verifying that the camera is working properly by running the application
software that came with the frame grabber and viewing a live video stream

2 Introduction

2-8

Setting Up Generic Windows Video Acquisition
Devices

IEEE 1394 (FireWire) and generic Windows video acquisition devices that use
Windows Driver Model (WDM) or Video for Windows (VFW) device drivers
typically require less setup. Plug the device into the USB or IEEE 1394
(FireWire) port on your computer and install the device driver provided by
the vendor.

Setting Up DCAM Devices

If you intend to access a DCAM-compliant IEEE 1394 (FireWire) camera, you
must install and configure the Carnegie Mellon University (CMU) DCAM
driver. The toolbox is not compatible with any other vendor-supplied driver,
even if the driver is DCAM compliant. See “Installing the CMU DCAM Driver
on Windows” on page 11-9 for more information.

Resetting Your Image Acquisition Hardware

To return MATLAB and your image acquisition hardware to a known state,
where no image acquisition objects exist and the hardware is not configured,
use the imaqreset function.

If you connect another image acquisition device to your system after MATLAB
is started, you can use imaqreset to make the toolbox aware of the new
hardware.

A Note About Frame Rates and Processing Speed

The frame rate describes how fast an image acquisition device provides data,
typically measured as frames per second.

Devices that support industry-standard video formats must provide frames
at the rate specified by the standard. For RS170 and NTSC, the standard
dictates a frame rate of 30 frames per second (30 Hz). The CCIR and
PAL standards define a frame rate of 25 Hz. Nonstandard devices can be
configured to operate at higher rates. Generic Windows image acquisition
devices, such as webcams, might support many different frame rates.
Depending on the device being used, the frame rate might be configurable
using a device-specific property of the image acquisition object.

Setting Up Image Acquisition Hardware

The rate at which the Image Acquisition Toolbox software can process images
depends on the processor speed, the complexity of the processing algorithm,
and the frame rate. Given a fast processor, a simple algorithm, and a frame
rate tuned to the acquisition setup, the Image Acquisition Toolbox software
can process data as it comes in.

2-9

2 Introduction

Previewing Data

2-10

In this section...

“Introduction” on page 2-10

“Opening a Video Preview Window” on page 2-11
“Stopping the Preview Video Stream” on page 2-12
“Closing a Video Preview Window” on page 2-13
“Previewing Data in Custom GUIs” on page 2-13

“Performing Custom Processing of Previewed Data” on page 2-15

Introduction

After you connect MATLAB to the image acquisition device (see Chapter 4,
“Connecting to Hardware”), you can view the live video stream using the
Video Preview window. Previewing the video data can help you make sure
that the image being captured is satisfactory.

For example, by looking at a preview, you can verify that the lighting and
focus are correct. If you change characteristics of the image, by using video
input object and video source object properties, the image displayed in the
Video Preview window changes to reflect the new property settings.

The following sections provide more information about using the Video
Preview window.

® “Opening a Video Preview Window” on page 2-11

® “Stopping the Preview Video Stream” on page 2-12

¢ “Closing a Video Preview Window” on page 2-13

Instead of using the toolbox’s Video Preview window, you can display the live
video preview stream in any Handle Graphics® image object you specify. In

this way, you can include video previewing in a GUI of your own creation. The
following sections describe this capability.

e “Previewing Data in Custom GUIs” on page 2-13

Previewing Data

e “Performing Custom Processing of Previewed Data” on page 2-15

Note The Image Acquisition Toolbox Preview window and the Preview
window that is built into the Image Acquisition Tool support the display of up
to 16-bit image data. The Preview window was designed to only show 8-bit
data, but many cameras return 10-, 12-, 14-, or 16-bit data. The Preview
window display supports these higher bit-depth cameras. However, larger bit
data 1s scaled to 8-bit for the purpose of displaying previewed data. If you need
the full resolution of the data, use the getsnapshot or getdata functions.

Opening a Video Preview Window

To open a Video Preview window, use the preview function. The Video
Preview window displays the live video stream from the device. You can only
open one preview window per device. If multiple devices are used, you can
open multiple preview windows at the same time.

The following example creates a video input object and then opens a Video
Preview window for the video input object.

vid = videoinput('winvideo');
preview(vid);

The following figure shows the Video Preview window created by this
example. The Video Preview window displays the live video stream. The size
of the preview image is determined by the value of the video input object’s
ROIPosition property. The Video Preview window displays the video data at
100% magnification (one screen pixel represents one image pixel).

In addition to the preview image, the Video Preview window includes
information about the image, such as the timestamp of the video frame, the
video resolution, and the current status of the video input object.

Note Because video formats typically express resolution as width-by-height,
the Video Preview window expresses the size of the image frame as
column-by-row, rather than the standard MATLAB row-by-column format.

2-11

2 Introduction

) ¥ideo Preview - dcam:1

Adaptor name and —f
\‘ ‘

=181 x]

livevideo mage

Timestamp of
current frame ‘ _
being d'l'spluyed ——— | 142151910 | 1024x768 |[wvaiting for START. |
Resolution —f L State of the video
input object

Note The Image Acquisition Toolbox Preview window and the Preview
window that is built into the Image Acquisition Tool support the display of up
to 16-bit image data. The Preview window was designed to only show 8-bit
data, but many cameras return 10-, 12-, 14-, or 16-bit data. The Preview
window display supports these higher bit-depth cameras. However, larger bit
data is scaled to 8-bit for the purpose of displaying previewed data. If you need
the full resolution of the data, use the getsnapshot or getdata functions.

Stopping the Preview Video Stream

When you use the preview function to start previewing image data, the Video
Preview window displays a view of the live video stream coming from the
device. To stop the updating of the live video stream, call the stoppreview
function.

2-12

Previewing Data

This example creates a video input object and opens a Video Preview window.
The example then calls the stoppreview function on this video input object.
The Video Preview window stops updating the image displayed and stops
updating the timestamp. The status displayed in the Video Preview window
also changes to indicate that previewing has been stopped.

vid = videoinput('winvideo');
preview(vid)
stoppreview(vid)

To restart the video stream in the Video Preview window, call preview again
on the same video input object.

preview(vid)

Closing a Video Preview Window

To close a particular Video Preview window, use the closepreview function,
specifying the video input object as an argument. You do not need to stop the
live video stream displayed in the Video Preview window before closing it.

closepreview(vid)

To close all currently open Video Preview windows, use the closepreview
function without any arguments.

closepreview

Note When called without an argument, the closepreview function only
closes Video Preview windows. The closepreview function does not close any
other figure windows in which you have directed the live preview video stream.
For more information, see “Previewing Data in Custom GUIs” on page 2-13.

Previewing Data in Custom GUIs

Instead of using the toolbox’s Video Preview window, you can use the preview
function to direct the live video stream to any Handle Graphics image object.
In this way, you can incorporate the toolbox’s previewing capability in a GUI
of your own creation. (You can also perform custom processing as the live
video is displayed. For information, see “Performing Custom Processing of
Previewed Data” on page 2-15.)

2-13

2 Introduction

2-14

To use this capability, create an image object and then call the preview
function, specifying a handle to the image object as an argument. The preview
function outputs the live video stream to the image object you specify.

The following example creates a figure window and then creates an image
object in the figure, the same size as the video frames. The example then calls
the preview function, specifying a handle to the image object.

% Create a video input object.
vid = videoinput('winvideo');

% Create a figure window. This example turns off the default
% toolbar, menubar, and figure numbering.
figure('Toolbar', 'none’',...

‘Menubar', 'none',...

‘NumberTitle', 'Off',...

‘Name', 'My Preview Window');

% Create the image object in which you want to display
the video preview data. Make the size of the image
% object match the dimensions of the video frames.

o°

vidRes get(vid, 'VideoResolution');
nBands get(vid, 'NumberOfBands');
hImage = image(zeros(vidRes(2), vidRes(1), nBands));

% Display the video data in your GUI.

preview(vid, hImage);

Previewing Data

When you run this example, it creates the GUI shown in the following figure.

_lojx]

[
J

Custom Preview

Performing Custom Processing of Previewed Data

When you specify an image object to the preview function (see “Previewing
Data in Custom GUIs” on page 2-13), you can optionally also specify a function
that preview executes every time it receives an image frame.

To use this capability, follow these steps:

1 Create the function you want executed for each image frame, called the
update preview window function. For information about this function, see
“Creating the Update Preview Window Function” on page 2-16.

2 Create an 1image object.

3 Configure the value of the image object’s 'UpdatePreviewWindowFcn'
application-defined data to be a function handle to your update preview
window function. For more information, see “Specifying the Update
Preview Function” on page 2-17.

4 Call the preview function, specifying the handle of the image object as
an argument.

2-15

2 Introduction

Note If you specify an update preview window function, in addition to
whatever processing your function performs, it must display the video data
in the image object. You can do this by updating the CData of the image
object with the incoming video frames. For some performance guidelines
about updating the data displayed in an image object, see Technical Solution
1-1B022.

Creating the Update Preview Window Function

When preview calls the update preview window function you specify, it passes
your function the following arguments.

Argument Description

obj Handle to the video input object being previewed

event A data structure containing the following fields:
Data Current image frame specified as an

H-by-W-by-B array, where H is the image
height and W is the image width, as
specified in the ROIPosition property, and
B is the number of color bands, as specified
in the NumberOfBands property

Resolution | Text string specifying the current image
width and height, as defined by the
ROIPosition property

Status String describing the status of the video
input object

Timestamp | String specifying the time associated with
the current image frame, in the format
hh:mm:ss:ms

himage Handle to the image object in which the data is to be
displayed

The following example creates an update preview window function that
displays the timestamp of each incoming video frame as a text label in the

2-16

http://www.mathworks.com/support/solutions/data/1-1B022.html?solution=1-1B022
http://www.mathworks.com/support/solutions/data/1-1B022.html?solution=1-1B022

Previewing Data

custom GUI. The update preview window function uses getappdata to
retrieve a handle to the text label uicontrol object from application-defined
data in the image object. The custom GUI stores this handle to the text label
uicontrol object — see “Specifying the Update Preview Function” on page
2-117.

Note that the update preview window function also displays the video data by
updating the CData of the image object.

function mypreview_fcn(obj,event,himage)
% Example update preview window function.

% Get timestamp for frame.
tstampstr = event.Timestamp;

% Get handle to text label uicontrol.
ht = getappdata(himage, 'HandleToTimestampLabel');

% Set the value of the text label.
set(ht, 'String',tstampstr);

% Display image data.
set(himage, 'CData', event.Data)

Specifying the Update Preview Function

To use an update preview window function, store a function handle to your
function in the 'UpdatePreviewWindowFcn' application-defined data of

the image object. The following example uses the setappdata function to
configure this application-defined data to a function handle to the update
preview window function described in “Creating the Update Preview Window
Function” on page 2-16.

This example extends the simple custom preview window created in
“Previewing Data in Custom GUIs” on page 2-13. This example adds three
push button uicontrol objects to the GUI: Start Preview, Stop Preview,
and Close Preview.

In addition, to illustrate using an update preview window function, the
example GUI includes a text label uicontrol object to display the timestamp

2-17

2 Introduction

2-18

value. The update preview window function updates this text label each
time a framed is received. The example uses setappdata to store a handle
to the text label uicontrol object in application-defined data in the image
object. The update preview window function retrieves this handle to update
the timestamp display.

[)

% Create a video input object.
vid = videoinput('winvideo');

% Create a figure window. This example turns off the default
% toolbar and menubar in the figure.
hFig = figure('Toolbar', 'none’,...

‘Menubar', 'none',...

‘NumberTitle', 'Off',...

‘Name', 'My Custom Preview GUI');

% Set up the push buttons
uicontrol('String', 'Start Preview',...
'Callback', 'preview(vid)',...

‘Units', 'normalized',...
'Position',[0 0 0.15 .07]);
uicontrol('String', 'Stop Preview',...
'Callback', 'stoppreview(vid)',...
‘Units', 'normalized',...
'Position',[.17 0 .15 .071]);
uicontrol('String', 'Close’,...
‘Callback', 'close(gcf)',...
‘Units', 'normalized',...
'Position',[0.34 0 .15 .07]);

% Create the text label for the timestamp

hTextLabel = uicontrol('style', 'text', 'String', 'Timestamp',
‘Units', 'normalized',...
'Position',[0.85 -.04 .15 .08]);

% Create the image object in which you want to
% display the video preview data.

vidRes = get(vid, 'VideoResolution');

imwWidth = vidRes(1);

imHeight = vidRes(2);

Previewing Data

nBands = get(vid, 'NumberOfBands');
hImage image(zeros(imHeight, imWidth, nBands));

% Specify the size of the axes that contains the image object
% so that it displays the image at the right resolution and
% centers it in the figure window.
figSize = get(hFig, 'Position');
figWidth = figSize(3);
figHeight = figSize(4);
set(gca, 'unit', 'pixels',...
'position',[((figWidth - imWidth)/2)...
((figHeight - imHeight)/2)...
imWidth imHeight 1);

% Set up the update preview window function.
setappdata(hImage, 'UpdatePreviewWindowFcn',@mypreview_fcn);

% Make handle to text label available to update function.
setappdata(hImage, 'HandleToTimestampLabel',,hTextLabel);

preview(vid, hImage);

2-19

2 Introduction

When you run this example, it creates the GUI shown in the following figure.
Each time preview receives a video frame, it calls the update preview window

function that you specified, which updates the timestamp text label in the
GUIL

My Custom Preview GUI 10| x|

Start Preview: Stop Preview Cloze 17:31:52 555

Custom Preview GUI with Timestamp Text Label

2-20

Using the Image Acquisition
Tool GUI

® “The Image Acquisition Tool Desktop” on page 3-2
* “Getting Started with the Image Acquisition Tool” on page 3-5
e “Selecting Your Device in the Image Acquisition Tool” on page 3-8

® “Setting Acquisition Parameters in the Image Acquisition Tool” on page
3-11

* “Previewing and Acquiring Data in the Image Acquisition Tool” on page
3-30

¢ “Exporting Data in the Image Acquisition Tool” on page 3-37
® “Saving Image Acquisition Tool Configurations” on page 3-41

¢ “Exporting Image Acquisition Tool Hardware Configurations to MATLAB”
on page 3-43

e “Saving and Copying the Image Acquisition Tool Session Log” on page 3-45

e “Registering a Third-Party Adaptor in the Image Acquisition Tool” on page
3-48

3 Using the Image Acquisition Tool GUI

The Image Acquisition Tool Desktop

In this section...

“Opening the Tool” on page 3-2

“Parts of the Desktop” on page 3-2

Opening the Tool

Image Acquisition Toolbox functionality is now available in a desktop
application. You connect directly to your hardware in the tool and can preview
and acquire image data. You can log the data to MATLAB in several formats,
and also generate a VideoWriter or AVI file, right from the tool.

The Image Acquisition Tool provides a desktop environment that integrates a
preview/acquisition area with Acquisition Parameters so that you can change
settings and see the changes dynamically applied to your image data.

To open the Image Acquisition Tool, do one of the following:

® Type imaqtool at the MATLAB command line.

¢ Select Start > Toolboxes > Image Acquisition > Image Acquisition
Tool (imaqtool) from MATLAB.

Note The right pane in the tool is the Desktop Help pane. As you work in
the tool the Help will provide information for the part of the interface that you
are working in. If the Desktop Help is closed, you can open it be selecting
Desktop > Desktop Help.

Parts of the Desktop
The Image Acquisition Tool has the following panes.

The Image Acquisition Tool Desktop

=T

File Tools Desktop Window Help

Preview - Creative WebCam Notebook Ultra #2 (winvideo-1): RGB24_640x480 (d.. = O 2 Desktop Help “[Oa x

‘
) [x]
10bit J::

BW_INC (default)

BW_INC_FAST

COLOR_CYCLE

HIGH_FPS

LARGE_FORMAT_21MP
MAX_ROI_ONLY

MNARROW _TALL

MARROW_WIDE
ROI_HEALS_TO_EVEN_WIDTH
THICK_TALL

(=] THICK_WIDE

[+ /@ Al Device Files Are Invalid (test-2)

[#-[8 Read-Only Mever Source Properties Device
[+ /@ Read-Only While Running Source Properties
[#
£
[+

The Hardware Browser shows the image acquisition
devices currently connected to your system. If you plug a
new device in while the Image Acquisition Tool is open, click
Tools > Refresh Image Acquisition Hardware to display
the new device in the Hardware Browser.

Each device is a separate node in the browser. All of the
formats the device supports are listed under the device. Each
device's default format is indicated in parentheses. Select the
device format or camera file you want to use for the
acguisition. When the format is selected, you can then set
acguisition parameters and preview your data

Note that when you select a format, the format name becomes
bold in the Hardware Browser. This gives you a visual way
to know which formats you have selected during a session.
The format name also appends an asterigk so that you know a
format was accessed but the configuration has not yet been
saved. If you save a format configuration, using the File >
Save Configuration menu, the asterisk disappears.

/8 Read-Only Always Source Properties Device
([Properties With Custom Get Functions (test
-8 Non-Contiguous ID Device (test-100)
-8 Creative WebCam Motebook Ultra 2 {winv
i 1420_160x120
1420_176x144 If you select Image Acquisition Toolbox, the top nede in
|E| 1420_320x240 the Hardware Browser, the Information pane wil display
|E| 1420_352x288 the version of r.|ATLAEa and the toolbox that you are using,
i |E| 1420_640%480 and what device adaptors you have installed. If you select a
sl

device, the Information pane will display the name of the
RGE24_160x120

= Displaying all frames: device, adaptor, and the device ID. When you select a specific
RGE24_176x144 . : P
format under a device, the Information pane will display the

Acquisition Parameters that you have set.

.|| ReB24_320%290
- |%| reE24_352x288

RGB24_640x480 (defauit) * T R ¥ Getting Started with the Image Acquisition Teol
E1-(8 Creative WebCam Notebook Ultra (vFl) (v _ Start Preview | Stop Pre... | Start Acquisition | Trigger I Stop Acquisition | Export Data... ¥ Image Acquisition Toel Menus

1420_640x480 (default) >
4 3
Information [a x | Acquisition Parameters w0a x |

Ganera\l Device Properﬁasl Logging Triggering IP.egion of Interest

RGB24_640x480

MNumber of triggers—————— [“Trigger type———
Device: Creative WebCam Not ICl Iﬁ triggers " Immediate
eI =R € Infinite * Manual
Selected source: inputl
Number of frames to acquire: 4
Logging mode: memory
Trigger type: manual

e Hardware Browser — Shows the image acquisition devices currently
connected to your system. Each device is a separate node in the browser.
All of the formats the device supports are listed under the device. Each
device’s default format is indicated in parentheses. Select the device format
or camera file you want to use for the acquisition. When the format is
selected, you can then set acquisition parameters and preview your data.

3 Using the Image Acquisition Tool GUI

3-4

See “Selecting Your Device in the Image Acquisition Tool” on page 3-8 for
more information about using the Hardware Browser.

Preview window — Use to preview and acquire image data from the
selected device format, and to export data that has been acquired in
memory to a MAT-file, the MATLAB Workspace, VideoWriter, or to tools
provided by the Image Processing Toolbox software. See “Previewing and
Acquiring Data in the Image Acquisition Tool” on page 3-30 for more
information about using the Preview window.

Acquisition Parameters — Use these tabs to set up general acquisition
parameters, such as frames per trigger and color space, device-specific
properties, logging options, triggering options, and region of interest.
Settings you make on any tab will apply to the currently selected device
format in the Hardware Browser. See “Setting Acquisition Parameters
in the Image Acquisition Tool” on page 3-11 for more information about
using the Acquisition Parameters. Also see the Help for each tab while
using the tool for more details. When you click any tab, the help for that
tab will appear in the Desktop Help pane.

Information pane — Displays a summary of information about the
selected node in the Hardware Browser.

Session Log — Displays a dynamically generated log of the commands that
correspond to actions taken in the tool. You can save the log to a MATLAB
code file or copy it.

Desktop Help — Displays Help for the pane of the desktop that has focus.
Click inside a pane for help on that area of the tool. For the Acquisition
Parameters pane, click each tab to display information about the settings
for that tab.

If the Desktop Help is closed, you can open it by selecting Desktop >
Desktop Help.

Getting Started with the Image Acquisition Tool

Getting Started with the Image Acquisition Tool

This section describes an example of the basic work flow of using the Image
Acquisition Tool to preview, acquire, and save image data. You don’t need to
do every step shown here, and you can change the order of some steps.

1 Decide which device you want to work with.

The Hardware Browser shows the image acquisition devices currently
connected to your system. If the device you want to use is not connected
to your system, plug it in and then select Tools > Refresh Image
Acquisition Hardware to display the new device in the Hardware
Browser.

2 Choose the format to work with.

The nodes listed under the device name are the formats the device supports.
They may correspond to the different resolutions and color spaces that your
device supports, or to different video standards or camera configurations.
This information comes from your device adaptor. Select the format you
want to use.

3 Preview to check that the device is working and the image is what you
expect.

Click the Start Preview button.

If necessary, physically adjust the device to achieve the desired image area,
or use the Region of Interest tab to define the acquisition region.

4 Decide how many frames you want to acquire.

The number of frames that will be acquired when you start the acquisition
is dependent on what is set in the Frames Per Trigger field on the
General tab and the Number of Triggers field on the Triggering

tab. For example, if you set Frames Per Trigger to 4 and Number of
Triggers to 2, the total number of frames acquired will be 8.

If you just want a snapshot of one frame, leave the default settings of 1 in
both of those fields. If you want a specific number of frames, use the fields
to set it.

3-5

3 Using the Image Acquisition Tool GUI

Alternatively, you can set the tool to acquire continuously and use
the buttons in the Preview Window to manually start and stop the
acquisition. This is discussed in a later step.

5 Set any general or device-specific parameters you need to set, on those tabs
of the Acquisition Parameters pane, or use the default settings.

6 Choose your log mode, which determines where the acquisition data is
stored.

On the Logging tab, use the Log To field to choose to log to memory, disk,
or both. Disk logging results in a saved VideoWriter file. If you choose
memory logging, you can export your data after the acquisition using the
Export Data button on the Preview Window.

For more information on logging, see the Help for the Logging tab in the
Desktop Help pane in the tool.

7 Start the acquisition by clicking the Start Acquisition button.

—If you set Trigger Type (on the Triggering tab) to Immediate, the tool
will immediately start logging data.

— If you set Trigger Type to Manual, click the Trigger button when you
want to start logging data.

8 Stop the acquisition.

— If you set Frames Per Trigger (on the General tab) to 1 or any other
number, your acquisition will stop when that number of frames is reached.

— If you set Frames Per Trigger to Infinite, click the Stop Acquisition
button to stop the acquisition.

Note that you can also click Stop Acquisition to abort an acquisition
if number of frames was specified.

9 Optionally you can export data that was saved to memory.

You can export the data that has been acquired in memory to a MAT-file,
the MATLAB Workspace, VideoWriter, or to the Image Tool, Image File,
or Movie Player tools that are provided by the Image Processing Toolbox

3-6

Getting Started with the Image Acquisition Tool

10

software using the Export Data button. For more information, see the
“Exporting Data” section of the Desktop Help on the Preview Window
in the Desktop Help pane in the tool.

Optionally you can save your configuration(s), using the File > Save
Configuration or File > Export Hardware Configuration menus. For
more information about these commands, see the “Image Acquisition Tool
Menus” section of the Help on the Hardware Browser in the Desktop
Help pane in the tool.

3-7

3 Using the Image Acquisition Tool GUI

3-8

Selecting Your Device in the Image Acquisition Tool

In this section...

“Selecting a Device and Format” on page 3-8

“Adding New Hardware” on page 3-9

“Using a Camera File” on page 3-10

Selecting a Device and Format

The Hardware Browser pane shows the image acquisition devices currently
connected to your system. Each device is a separate node in the browser. All
of the formats the device supports are listed under the device. Each device’s
default format is indicated in parentheses. The format information displayed
under a device comes from the device’s adaptor.

Selecting Your Device in the Image Acquisition Tool

| Hardware Browser

{k Image Acquisition Toolbox
=18 Color Device {demao-1)

..M ccr

....... Fa| RS170 (default)

=18 Digital Device (demo-3)

L j Click ko add camera Fils, .,

...... Fe| I420_160x120
...... Fa| I420_176x144
...... Fa| I420_320x240
...... Fa| I420_352x238
...... Fa| I420_640x430
...... Pa| RGE24_160x%120
...... Fa| RGE24_176x144
...... Fa| RGE24_320%240
...... Fa| RGE24_352x288
E 50 (default)

) 420_640:480 fdefaulty

=18 Creative WebCarn Notebook Ultra #2 (winvideo-1)

=18 Creative WebCarn Notebook Ultra (WP (winvideo-2)

Select the device format or camera file you want to use for the acquisition by
clicking its name in the tree. When the format is selected, you can then set
acquisition parameters and preview your data.

Adding New Hardware

When you open the Image Acquisition Tool, the Hardware Browser
automatically shows the image acquisition devices supported by the toolbox
that are currently connected to your system. If you plug a new device in
while the Image Acquisition Tool is open, select Tools > Refresh Image

3-9

3 Using the Image Acquisition Tool GUI

Acquisition Hardware to display the new device in the Hardware
Browser.

Using a Camera File

If your device supports the use of a camera file, also known as a device
configuration file, you can select it under the device name in the Hardware
Browser. For example, some frame grabbers support them.

Under the device name in the Hardware Browser, you would see a node that
says Click to add camera file... if the device supports the use of camera files.

To use a camera file:

1 In the Hardware Browser, single-click the node under your device name
that says Click to add camera file....

2 In the Specify camera file dialog box, type the path and name of the file, or
click the Browse button to locate it, and then click OK.

The camera file will then become a new node under the device, similar
to any of the formats listed under a device. You can then set acquisition
parameters, preview, and acquire data using it.

Note The tool ignores hardware trigger configurations included in a
camera file. To configure hardware triggering, use the Trigger tab in the
Acquisition Parameters pane.

3-10

Setting Acquisition Parameters in the Image Acquisition Tool

Setting Acquisition Parameters in the Image Acquisition
Tool

In this section...

“Using the Acquisition Parameters Pane” on page 3-11
“Setting Frames Per Trigger” on page 3-12

“Setting the Color Space” on page 3-13

“Setting Device-Specific Parameters” on page 3-13
“Logging Your Data” on page 3-16

“Setting Up Triggering” on page 3-20

“Setting a Region of Interest” on page 3-23

“Restoring Default Parameters” on page 3-29

Using the Acquisition Parameters Pane

The tool allows you to set acquisition parameters directly in the desktop using
the Acquisition Parameters pane. Settings you make will apply to the
currently selected device format in the Hardware Browser.

The Acquisition Parameters pane contains the following tabs:
¢ General — Use to set up general acquisition parameters, such as frames
per trigger and color space.

¢ Device Properties — Use to view or change device-specific properties.

¢ Logging — Use to set up logging options, such as logging mode, which
determines whether your acquired data is logged to memory, disk, or both.
If you want to generate a VideoWriter file of your data, use the Disk
Logging option on this tab.

e Triggering — Use to set up triggering options, such as number of triggers
and trigger type. If you want to do manual triggering using the Trigger
button, use the Trigger Type option on this tab.

¢ Region of Interest — Use to set a Region of Interest (ROI) if you only
want to use part of an image.

3-11

3 Using the Image Acquisition Tool GUI

For more detailed information about the settings on each tab, see the Help
topic for the tab while using the tool. When you click a tab, the corresponding
topic will appear in the Desktop Help pane.

Note Once you have changed parameters of a device, you can restore the
device’s default parameters by selecting the device format in the Hardware
Browser and right-clicking Clear Selected Hardware Configuration.

Setting Frames Per Trigger

The Frames Per Trigger field on the General tab is used to set the number
of frames per trigger you want to acquire.

e If you want your acquisition to be a specific number of frames per trigger,
use the default of 1 frame, or use the arrows to select the number of frames
or type in the number.

e If you want to acquire frames continuously, set the Frames Per Trigger
to infinite and then use the Stop Acquisition button to stop the
acquisition, or do manual triggering using the Triggering tab.

m e

: General | Device Propertiesl Logging | Triggering | Region of Interest|

Frames per trigger

@ 5 == frames

1 Infinite

Color space

Returned color space: | rgh Wl

3-12

Setting Acquisition Parameters in the Image Acquisition Tool

The number of frames that will be acquired when you start an acquisition
depends on what is set in the Frames Per Trigger field on the General tab
and the Number of Triggers field on the Triggering tab. For example, if
you set Frames Per Trigger to 4 and Number of Triggers to 2, the total
number of frames acquired will be 8.

Note that if you set Frames Per Trigger to infinite, you cannot set
Number of Triggers on the Triggering tab.

Note Some devices need a few frames to warm up, or may always skip the
first frame. If your device does that, change the number of frames accordingly
to adjust for that. You can also adjust for camera warm-up by using manual
triggering on the Triggering tab.

Setting the Color Space

Use Color Space on the General tab to set the color space for the selected
device format. The Returned Color Space field has three options: rgb,
YCbCr, and grayscale. The setting that is your device format’s default color
space is shown as the default. You can use the arrow to select another setting.

Additionally, if the default color space is grayscale, a value of bayer will

be available in the Returned Color Space field for some devices, and the
Bayer Sensor Alignment field will also be displayed. Use the drop-down
list to select one of the four possible sensor alignments. This feature allows
the tool to demosaic Bayer patterns returned by the hardware and interpolate
them into standard RGB color images. For more information about this
feature, see the BayerSensorAlignment property reference page.

Setting Device-Specific Parameters

View or change device-specific properties using the Device Properties tab.
The selected device’s properties appear in the Properties area. The specific
properties that appear depend on your device.

3-13

3 Using the Image Acquisition Tool GUI

3-14

| Acquisition Paramekers

Lol i R 4
General | Loggingl Triggeringl Region of Interestl
Selected source: I input vI =
~Properties
Reset ko defaulks
1
Brightness: ISU 1]
i] 100
| L
Contrask: ISU 4|
V] 100
1
Exposure: |58 1]
0 100
Expasure Made: I auko - |
Frame Rate: I 30.0000 vl
|
Gamma: |30
I i] 100 LI

The Selected source field specifies the name of the selected source for
the current device. Many device adaptors only have one input source, so
for example, this might show something like input1, port1, or input0 by
default. If your device supports multiple source names, they will appear in
the drop-down list.

Use the Properties area to view or edit properties:

e [f a property has an edit box or slider, that value is editable.

e [f a property has an arrow indicating a drop-down list, then you can select
a value from the list.

e If a property has a value listed that is grayed out, then that value is not
currently editable.

Changes you make in the Properties area are applied to your acquisition
or preview dynamically. For example, to change the exposure for the camera
you are using, edit the value in the Exposure property text field or use the
slider to change it. You will immediately see the change in the Preview
window if you are previewing at the time, or in the next acquisition when
you click the Start Acquisition button.

Setting Acquisition Parameters in the Image Acquisition Tool

Click the Reset to defaults button to undo any modifications you made and
restore the default settings of the device.

Property Help

To get help on any of the properties in the Device Properties tab, right-click
a property and select What’s This?. A Help window opens and displays the
help for the selected property, as well as the rest of the properties, which

are available by scrolling. This is the same information as the device help
you access using the imaghelp command. For more detailed information on
device-specific properties, see your device’s documentation.

Note About Frame Rate
If FrameRate appears in the Properties area, that means your device has a
FrameRate property. The information in the table comes from your device.

The value set there will be the frame rate that your device uses, in frames
per second.

If FrameRate does not appear in the list, your device does not support that
property.

3-15

3 Using the Image Acquisition Tool GUI

Logging Your Data

Set logging options using the Logging tab. This determines where your data
1s logged to when you do an acquisition.

Acquisition Parameters

| General | Device PropertiesE Legging | Triggering I Region of Interest|

»

Log to Memory logging |
) Memory Memory limit: 1000.0 | MEB
@ Disk

(7) Disk and memory Disk logging (VideoWriter)

Filename: |HAMATLABfiles\acquisition.mj2

[T] Automatically increment filename

m

Profile:| Motion JPEG 2000 ~

Compression Ratio: |10
Frame Rate: |30
Lossless Compression: false v:

MJ2 Bit Depth:

Use the Log to options to select where to log your acquisition. Select one
of the following:

¢ Memory — Acquisition is logged to memory. This means that the acquired
data that you do not otherwise save (using Export Data) will be logged
to your system’s memory, and will be available to you only during the
acquisition session. The data will be lost if you do another acquisition, or
you close the tool without exporting the data. This is the default setting.

¢ Disk — Acquisition is logged to disk as a VideoWriter file, in the location
you specify in the Disk logging area. This means that the acquired data
will be logged to disk and will be available to you there after the acquisition
session. After selecting Disk, the Disk logging area becomes editable and
you can enter or browse to the location and name the file.

3-16

Setting Acquisition Parameters in the Image Acquisition Tool

¢ Disk and memory — Acquisition will be logged to both disk, in the
location you specify in the Disk logging area, and memory.

Memory Logging
If you select Memory or Disk and memory in the Log to options, the
Memory limit field displays how much memory is available on your system.

This equals the total number of bytes that image acquisition frames can
occupy in memory. By default, the tool sets this limit to equal all available
physical memory when you first use the tool, or 1 GB, whichever is less.

Disk Logging

If you select Disk or Disk and memory in the Log to options, the Disk
logging area becomes editable so you can designate a file and location to
save to.

Note Disk logging generates a VideoWriter file. If you select a VideoWriter
profile that generates an AVI file, note that AVI files are limited to a bit-depth
of 8 bits per pixel for each band. If you have higher bit data, you should not log
it to an AVI file because the AVI format is restricted to 8-bit data. If you log
higher bit data to an AVI file, it will be scaled and then logged as 8-bit data.

To use disk logging:

1 Click the Browse button to select a location for the file, or enter the name
of the location.

2 In the Save dialog box, browse to the location and then enter a name in the
File name field, and click Save.

Uncompressed AVI is the default profile, so the .avi extension is
appended to the name on the Logging tab initially, and the other fields
become editable. You can change the profile in step 4.

3 Optionally select Automatically increment filename if you want
the tool to name subsequent acquisitions using the same root name,
plus an incremented number. For example, if you enter the file name

3-17

3 Using the Image Acquisition Tool GUI

3-18

experiment.avi and then select this option, it will be replaced by
experiment _0001.avi, followed by experiment 0002.avi, etc.

This option is useful if you need to acquire multiple videos of one or more
subjects. For example, a lab technician might want to acquire 10 seconds of
video on a group of five different cultures and save them for later analysis.
The technician may want resulting file names such as sample 0001.avi,
sample_0002.avi, etc.

You can use any of the profiles offered by VideoWriter. Accept the default
profile of Uncompressed AVI or select another. Currently supported
profiles are:

® 'Motion JPEG 2000' — Compressed Motion JPEG 2000 file. Can log
single-banded (grayscale) data as well as multi-byte data.

e 'Archival' — Motion JPEG 2000 file with lossless compression.
® 'Motion JPEG AVI' — Compressed AVI file using Motion JPEG codec.
® 'Uncompressed AVI' — Uncompressed AVI file with RGB24 video.

Additional logging options appear dynamically after you select a profile.

If you select Motion JPEG 2000 or Archival as your profile, you can set the
Compression Ratio, Frame Rate, Lossless Compression, and MdJ2
Bit Depth options. Accept the default values or change them.

If you selected Motion JPEG AVI as your profile, you can set the Frame
Rate and Quality options. Accept the default values or change them.

If you selected Uncompressed AVI as your profile, you can set the Frame
Rate option. Accept the default value or change it.

VideoWriter Options

¢ Compression Ratio is a number greater than 1 that specifies the target
ratio between the number of bytes in the input image and the number
of bytes in the compressed image. The data is compressed as much as
possible, up to the specified target. This is only available for objects
associated with Motion JPEG 2000 files. The default is 10.

Setting Acquisition Parameters in the Image Acquisition Tool

* Frame Rate is the rate of playback for the video in frames per second.
The default 1s 30. If your device has a set frame rate, that will be used
instead.

* Lossless Compression is a Boolean value (logical true or false) only
available for objects associated with Motion JPEG 2000 files. If you
select true, VideoWriter uses reversible mode so that the decompressed
data is identical to the input data, and ignores any specified value for
CompressionRatio. The default is false for the Motion JPEG 2000
profile, and true for the Archival profile.

e MJ2 Bit Depth is the number of least significant bits in the input image
data, from 1 to 16. This is only available for objects associated with
Motion JPEG 2000 files. If you do not specify a value, VideoWriter sets
the bit depth based on the input data type. For example, if the input
data is an array of uint8 or int8 values, MU2BitDepth is 8.

® Quality is a number from 0 to 100. Higher quality numbers result in
higher video quality and larger file sizes. Lower quality numbers result
in lower video quality and smaller file sizes. Only available for objects
associated with the Motion JPEG AVI profile. The default is 75.

6 After setting your profile and options, start your acquisition to log a
VideoWriter file to disk.

Note about bit size of AVI files

AVI files are limited to a bit depth of 8 bits per pixel for each band. If you
have higher bit data, you should not log it to a profile that creates an AVI file
because the AVI format is restricted to 8-bit data. If you log higher bit data to
an AVI file, it will be scaled and then logged as 8-bit data. The Archival and
Motion JPEG 2000 profiles do not have this issue.

3-19

3 Using the Image Acquisition Tool GUI

Setting Up Triggering

Use the Triggering tab to set up triggering options.

| Generall Device Proper‘tiesl Logging | TfngEFiﬂ9§| Region ofInterest|

Mumber of triggers Trigger type
@ 1% |triggers @ Immediate
) Infinite 70 Manual

3-20

The total number of frames that will be acquired when you start an acquisition
depends on what is set in the Frames Per Trigger field on the General tab
and the Number of Triggers field on the Triggering tab. For example, if
you set Frames Per Trigger to 4 and Number of Triggers to 2, the total
number of frames in the acquisition will be 8.

Selecting the Number of Triggers

If you want to do an acquisition that is comprised of a finite number of frames,
set the Number of Triggers to any number, or use the default of 1 trigger.

If you want to control the start and stop of the acquisition, regardless of the
number of frames acquired, select infinite. With an infinite number of
triggers, you stop the acquisition manually by clicking the Stop Acquisition
button in the Preview window.

Selecting the Trigger Type
The default of Immediate means that when you start an acquisition using the
Start Acquisition button, the acquisition begins immediately.

Setting Acquisition Parameters in the Image Acquisition Tool

If you change the setting to Manual, the Trigger button is activated in the
Preview window, and you use it to start the acquisition.

To perform manual triggering:

1 Select your device format and optionally click Start Preview to preview
the device.

2 Optionally set any acquisition parameters and stop the preview.
3 Select Manual in the Trigger Type field on the Triggering tab.
4 Click the Start Acquisition button to get live feed from the device.

The Trigger button is activated in the Preview window once the
acquisition starts.

5 Click the Trigger button when you want to start logging data.
If you have a defined number of triggers (not infinite), then the acquisition
will stop when you have acquired that number of frames, based on the

Frames Per Trigger field on the General tab.

If Number of Triggers is set to infinite, use the Stop Acquisition
button to stop the acquisition.

If your device supports hardware triggering, that option will also appear
in the Trigger Type field.

To perform hardware triggering:

1 Select your device format and optionally click Start Preview to preview
the device.

2 Optionally set any acquisition parameters and stop the preview.

3 Select Hardware in the Trigger Type field on the Triggering tab.

3-21

3 Using the Image Acquisition Tool GUI

3-22

Acquisition Parameters

| General | Device Propertiesl LoggingE Triggering§| Region ofInterest|

Mumber of triggers Trigger type
@ 115 triggers) Immediate
1 Infinite) Manual

@ Hardware
Trigger Source: OptoTrig hd
Trigger Condition: fallingEdge ':

- '

4 Select your Trigger Source. This indicates the hardware source that is
monitored for trigger conditions. When the condition specified in Trigger
Condition is met, the trigger is executed and the acquisition starts.
Trigger Source is device-specific. The drop-down list will show the
mechanisms your particular device uses to generate triggers. For example,
it might be something like Port0 and Port1, or OptoTrig and TTL.

5 Select your Trigger Condition. This specifies the condition that must
be met, via the Trigger Source, before a trigger event occurs. Trigger
Condition is device-specific. The drop-down list will show the conditions
your particular device uses to generate triggers. For example, it might be

something like risingEdge and fallingEdge.

6 Click the Start Acquisition button to get live feed from the device.

7 When the Trigger Condition is met, the acquisition begins.

If you have a defined number of triggers (not infinite), then the acquisition
will stop when you have acquired that number of frames, based on the

Frames Per Trigger field on the General tab.

If Number of Triggers is set to infinite, use the Stop Acquisition

button to stop the acquisition.

Setting Acquisition Parameters in the Image Acquisition Tool

Setting a Region of Interest

By default your acquisition will consist of the entire frame that the device
acquires, which is equal to the selected format’s resolution. If you want to
acquire a portion of the frame, use the Region of Interest tab to set the
desired region. The ROI window defines the actual size of the frame logged by
the tool, measured with respect to the top-left corner of an image frame.

You can set a Region of Interest (ROI) manually by using the Manual
Configuration settings on the Region of Interest tab, or interactively in
the Preview Window.

Setting Region of Interest Manually

To set up an ROI manually using the Manual Configuration field on the
Region of Interest tab:

1 Start your preview by clicking the Start Preview button in the Preview
Window.

2 Adjust one or more of the X-Offset, Y-Offset, Width, or Height settings
until you reach the desired region.

| General I Device Proper‘tiesl Logging I Triggering | Region of Iﬂterest§|

Bl Select or Edit Manual configuration
K-Offset: 0= : %
D:C Reset = &
¥-Offset: 0 origin | G
Width: a0 L —_ e '
= X-Offset : -
Height: 4805 Region of :E)
Interest + o
Width

3-23

3 Using the Image Acquisition Tool GUI

3-24

Use the arrows in each field to adjust the numbers. The preview resizes

as you make changes.

3 When the region is the desired size, start your acquisition by clicking the
Start Acquisition button.

Note: You cannot adjust the ROI after starting the acquisition.

Setting Region of Interest Interactively
You can also set a region of interest interactively while previewing your image.

To set a region of interest interactively:
1 Start your preview by clicking the Start Preview button in the Preview
Window.

2 Click the Select Region of Interest button in the top-left corner of the
Preview Window to activate the interactive ROI feature.

Setting Acquisition Parameters in the Image Acquisition Tool

[Preview - Creative WebCam Notebook Ultra #2 {winvideo-1): RGBZ4_640x480 {default)

Select Region of Interest

Ready to start acquisition 113213845
Preview Acquire
Start Preview | Stop Preview Skark Acquisition | Trigger | Stop Acquisition | Expork Data,.,

Your cursor becomes a selection tool.

Note that the Select Region of Interest button is enabled only during
preview mode.

3-25

3 Using the Image Acquisition Tool GUI

3-26

3 Position the cursor at one of the edges of the region you want to capture and
click the left mouse button. Hold the button while dragging the selection
tool over the image to outline the region you want to capture.

4 Release the mouse button to freeze the region.

The region is not set until you take action to commit it.

Setting Acquisition Parameters in the Image Acquisition Tool

[Preview - Creative WebCam Motebook Ultra #2 (winvideo-1): RGBZ24_ 6401480 (default)

Ready to start acquisition 11:34:19.271
Freview Acquire
Start Frevievs | Stop Prewviews Skart Acquisition | Trigger: | Stop Acquisition | - Expork Data,.,

5 If the selected area is the region you want to use, start your acquisition by
clicking the Start Acquisition button.

In this case, the region appears as follows.

3-27

3 Using the Image Acquisition Tool GUI

3-28

|

Preview

Dizplaying all frames.

Acquire
Start Preview | Stop Previewl ’V Skark Acquisitianl Triggerl Stop Acquisition EE%plﬁFE"ﬁEEé

Before starting the acquisition, if you want to adjust the region further, you
can drag the selected region around while still in selection mode. You can
also drag any of the handles on the region outline to change the dimensions
of the region. You can then commit the region by pressing Enter or using
the right-click menu Commit Region of Interest inside the region. You

Setting Acquisition Parameters in the Image Acquisition Tool

can also commit a region by pressing the space bar or double-clicking inside
the selection, or starting the acquisition.

You can clear the drawn region before you commit it by single-clicking
anywhere in the Preview Window outside of the selected area. You will
still be in ROI selection mode. If you want to clear the selected region and
exit ROI selection mode, press the Delete key, press the Escape key, or
use the right-click menu Exit Region of Interest Mode inside the region.

Note: If you start another acquisition with the same device, the ROI that you
set will remain the default that is used in subsequent acquisitions. To reset to
the original image size, click the Reset Region of Interest to Maximum
button in the Preview Window or the Reset button on the Region of
Interest tab.

Restoring Default Parameters

Once you have changed parameters of a device, you can restore the device’s
default parameters by selecting the device format in the Hardware Browser
and right-clicking Clear Selected Hardware Configuration. That clears

any changes you have made and resets the default parameters of that device
format.

If you want to save a configuration before clearing it, first select Export
Selected Hardware Configuration from the right-click menu.

3-29

3 Using the Image Acquisition Tool GUI

Previewing and Acquiring Data in the Image Acquisition
Tool

In this section...

“The Preview Window” on page 3-30

“Previewing Data” on page 3-32

“Acquiring Data” on page 3-33

The Preview Window

The Preview window displays the image data when you preview or acquire
data.

3-30

Previewing and Acquiring Data in the Image Acquisition Tool

m Notebook Ultra (winvideo-1): RGB24_640x480 (default)

Displaying all frames.

Preview

Skart Preview

Acquire

Stop Preview Skart Acquisition | Trigger | Stop Acquisition

Use the buttons in the Preview window to:

® Preview your image. See “Previewing Data” on page 3-32 for more
information.

3-31

3 Using the Image Acquisition Tool GUI

3-32

® Acquire data. See “Acquiring Data” on page 3-33 for more information.

e Export data. See “Exporting Data in the Image Acquisition Tool” on page
3-37 for more information.

® Set Region of Interest. See “Setting a Region of Interest” on page 3-23
for more information.

Below the area that displays the frames you will see text messages with
information relative to the current state of the window. For example in the
figure above, that text indicates that all the frames that were acquired are
being displayed. After you start and stop a preview, the text will indicate
that the tool is ready to acquire data.

During an acquisition, a running timer appears under the display area that
indicates the actual time of the frame acquisition.

Note The Image Acquisition Toolbox Preview window and the Preview
window that is built into the Image Acquisition Tool now support the display
of up to 16-bit image data. The Preview window was designed to only show
8-bit data, but many cameras return 10-, 12-, 14-, or 16-bit data. The Preview
window display now supports these higher bit-depth cameras.

Previewing Data
To preview data:

1 Select the device and format in the Hardware Browser.
2 Click the Start Preview button to test your device.
3 If necessary, adjust the device to achieve the desired image.

4 Set the Frames Per Trigger on the General tab and the Number of
Triggers on the Triggering tab, to set the total number of frames for
the acquisition.

5 Set any other acquisition parameters to adjust the quality of the image
or other acquisition factors.

Previewing and Acquiring Data in the Image Acquisition Tool

You are now ready to start the acquisition.

Acquiring Data

To acquire data:

1 Select the device and format in the Hardware Browser. The Hardware
Browser shows the image acquisition devices currently connected to your
system. If the device you want to use is not connected to your system, plug
it in and then select Tools > Refresh Image Acquisition Hardware to
display the new device in the Hardware Browser.

The nodes listed under the device name are the formats the device supports.
They may correspond to the different resolutions and color spaces that your
device supports, or to different video standards or camera configurations.
This information comes from your device adaptor. Select the format you
want to use.

See “Selecting Your Device in the Image Acquisition Tool” on page 3-8 for
more information about devices and formats.

2 Use the Preview feature to test and set up your device by clicking the Start
Preview button. If necessary, physically adjust the device to achieve the
desired image area, or use the Region of Interest tab of the Acquisition
Parameters pane to constrain the image.

See “Previewing Data” on page 3-32 for more information on previewing.

3 Set the Frames Per Trigger on the General tab and the Number of
Triggers on the Triggering tab, to set the total number of frames for the
acquisition, if you did not do so while previewing.

For example, if you set Frames Per Trigger to 4 and Number of
Triggers to 2, the total number of frames acquired will be 8.

If you just want a snapshot of one frame, leave the default settings of 1 in
both fields. If you want a specific number of frames, use the fields to set it.

Alternatively, you can set the tool to acquire continuously and use
the buttons in the Preview window to manually start and stop the
acquisition.

3-33

3 Using the Image Acquisition Tool GUI

3-34

4 Set any necessary acquisition parameters if you did not do so while
previewing. See “Setting Acquisition Parameters in the Image Acquisition
Tool” on page 3-11 for more information.

5 Choose your log mode, which determines where the acquisition data is
stored.

On the Logging tab, use the Log To field to choose to log to memory, disk,
or both. Disk logging results in a saved VideoWriter file. If you choose
memory logging, you can export your data after the acquisition using the
Export Data button on the Preview window.

For more information about logging, see “Logging Your Data” on page 3-16.

6 Start the acquisition by clicking the Start Acquisition button.

¢ Ifyou set Trigger Type (on the Triggering tab) to Immediate, the tool
will immediately start logging data.

e If you set Trigger Type to Manual, click the Trigger button when
you want to start logging data. For more information about manual
triggering, see “Setting Up Triggering” on page 3-20.

7 Stop the acquisition:

¢ If you set Frames Per Trigger (on the General tab) to 1 or any
other number, your acquisition will stop when that number of frames
is reached.

¢ [fyou set Frames Per Trigger to infinite, click the Stop Acquisition
button to stop the acquisition.

Note that you can also click Stop Acquisition to abort an acquisition if
the number of frames was specified.

When the acquisition stops, if you logged to memory or disk and memory, the
Preview window will display all or some of the frames of the acquisition.
The window can show up to nine frames. If you acquire more than nine
frames, it will display frames at an even interval based on the total number of
frames. The montage of nine frames are indexed linearly from the acquired
images. The text under the images will list which frames are shown. You can
also hover your cursor over each frame to see which frame number it is, as
shown in the following figure.

Previewing and Acquiring Data in the Image Acquisition Tool

| Preview - Creative WebCam Notebook Ultra (winvideo-1): RGB24_640x480 (default)

Dizplaying 9 of 25 fratmes: 1,4, 7,110,135, 16,13, 22, and 25.

Preview

Stark Preview

Acquire

Stop Preview Start Acquisition | Trigger | Stop Acquisition

xpor'i:mﬁéta

3-35

3 Using the Image Acquisition Tool GUI

3-36

If Images Are Blurry or Dark

If the first one or more frames of your acquisition are blurry, black, or of low
quality, your camera may need to warm up before you capture frames.

You can allow for device warm-up by using manual triggering. This allows
you to start the acquisition after the device has warmed up and is acquiring
image data that meets your needs.

To use manual triggering, go to the Triggering tab of the Acquisition
Parameters pane and select Manual in the Trigger Type field.

For more detailed instructions about manual triggering, see “Selecting the
Trigger Type” on page 3-20.

For more information about troubleshooting specific devices, see
“Troubleshooting Overview” on page 11-2 in the Troubleshooting chapter.

Exporting Data in the Image Acquisition Tool

Exporting Data in the Image Acquisition Tool

You can export the data that has been acquired in memory to a MAT-file, the
MATLAB Workspace, VideoWriter, or other options.

To export the acquisition data:

1 Click the Export Data button in the Preview window to export the last
acquisition that was logged to memory.

2 In the Data Exporter dialog box, select MAT-File, MATLAB Workspace, or
one of the other options in the Data Destination field. You can choose
Image Tool or Image File for single-frame acquisitions.

These two options are provided by the Image Processing Toolbox software.
The Movie Player tool is also provided by the Image Processing Toolbox
software and is only available for multiple-frame acquisitions. VideoWriter
is part of core MATLAB and is recommended.

3 If you selected MAT-File or MATLAB Workspace, then enter a name for the
new variable in the Variable Name field, and click OK.

4\ Data Exporter @

Data Destination: | MAT-File -

Filename: Browse...

Wariable Name:

OK Cancel

3-37

3 Using the Image Acquisition Tool GUI

4 If you selected VideoWriter, you need to select a profile from the Profile
list. For information on the profiles, see “Disk Logging” on page 3-17.

4\ Data Exporter @
Data Destination: VideoWriter v:
Filename: | H:\MATLABfiles\acquisition
Praofile: | Uncompressed AVI v;

Archival
Motion JPEG 2000
Motion JPEG AVI
Uncompressed AVI
[oK] [Cancel]

The VideoWriter Parameters dialog box opens after you select a file name
and profile and click OK. If you selected Motion JPEG 2000 or Archival as
your profile, you can set the Compression Ratio, Frame Rate, Lossless
Compression, and MdJ2 Bit Depth options. Accept the default values

or change them.

If you selected Motion JPEG AVI as your profile, you can set the Frame
Rate and Quality options. Accept the default values or change them.

If you selected Uncompressed AVI as your profile, you can set the Frame
Rate option. Accept the default value or change it.

3-38

Exporting Data in the Image Acquisition Tool

P)

VideoWriter Parameters @

Filename: | H:\MATLABfiles\acquisition.m)2 Browse

Profile: | Motion IPEG 2000

Compression Ratio: |10
Frame Rate: |30
Lossless Compression: | false =

MJ2 Bit Depth:

[OK H Cancel

VideoWriter Options

¢ Compression Ratio is a number greater than 1 that specifies the target
ratio between the number of bytes in the input image and the number
of bytes in the compressed image. The data is compressed as much as
possible, up to the specified target. This is only available for objects
associated with Motion JPEG 2000 files. The default is 10.

¢ Frame Rate is the rate of playback for the video in frames per second.
The default is 30.

® Lossless Compression is a Boolean value (logical true or false) only
available for objects associated with Motion JPEG 2000 files. If you
select true, VideoWriter uses reversible mode so that the decompressed
data is identical to the input data, and ignores any specified value for
CompressionRatio. The default is false for the Motion JPEG 2000
profile, and true for the Archival profile.

e MdJ2 Bit Depth is the number of least significant bits in the input image
data, from 1 to 16. This is only available for objects associated with
Motion JPEG 2000 files. If you do not specify a value, VideoWriter sets
the bit depth based on the input data type. For example, if the input
data is an array of uint8 or int8 values, MJ2BitDepth is 8.

¢ Quality is a number from 0 to 100. Higher quality numbers result in
higher video quality and larger file sizes. Lower quality numbers result

3-39

3 Using the Image Acquisition Tool GUI

in lower video quality and smaller file sizes. Only available for objects
associated with the Motion JPEG AVI profile. The default is 75.

5 If you exported to the MATLAB Workspace, the dialog box closes and the
data is saved to the Workspace.

If you exported to a MAT-File, the dialog box closes and the file is saved to
the location you specified in the Data Exporter dialog box.

If you exported to Image Tool, Image File, or Movie Player, the file
immediately opens in that tool.

If you exported to VideoWriter, the file is created and saved in the location
you specified in the Data Exporter dialog box.

3-40

Saving Image Acquisition Tool Configurations

Saving Image Acquisition Tool Configurations

You can save the configuration information about any of your device formats.
This includes any parameters you set on any of the tabs in the Acquisition
Parameters pane. Then when you return to the tool, you can load the
configuration so that you do not have to reset those parameters.

To save a configuration:

1 Select File > Save Configuration.
The Save Configuration dialog box opens.
2 Decide what configuration(s) to save.

The Save Configuration dialog box lists the currently selected device
format, as well as any others you selected in the Hardware Browser
during the tool session. All formats are selected by default, meaning their
configurations will be saved. If you do not want to save a configuration,
clear it from the list.

I o]

4\ Save Configuration @
Select the configurations to save:
Device Mame Format
Color Device (demo-1) RGE_MTSC
Monochrome Device (demo-2) [R5170
Test Device (test-1) 12bitColor
’ Save ” Close ” Help]

3 Click Save.
The Save File dialog box opens.

4 Enter a file name and click Save.

3-41

3 Using the Image Acquisition Tool GUI

3-42

The configuration is saved to an Image Acquisition Tool (IAT) file in the
location you specified.

You can then open the saved configuration file in a future tool session by
selecting File > Open Configuration. In the Open Configuration dialog box,
browse to an IAT file and click Open.

Note You can also export hardware configuration information to other
formats such as a MATLAB code file or a MAT-file that can be accessed from
MATLAB. See “Exporting Image Acquisition Tool Hardware Configurations
to MATLAB” on page 3-43.

Exporting Image Acquisition Tool Hardware Configurations to MATLAB®

Exporting Image Acquisition Tool Hardware Configurations

to MATLAB

You can export the video input objects and their configured parameters from
the tool to a choice of multiple formats. You can then access the video object

in MATLAB.

To export a hardware configuration:

1 Select File > Export Hardware Configuration.

The Export Hardware Configuration dialog box opens.

r-

4 Export Hardware Configuration

Select the configurations to save:

Object destination: MATLABE Workspace

=

Device Mame Format Variable Mame
Color Device (demo-1) RGEB_MTSC |widl
Monochrome Device (demo-2) |RS170 wid2
[#] | Test Device (test-1) 12bitColor |wid3

[Save H Close H Help]

2 Select the file format from the Object destination list.

® MATLAB Workspace saves the video input object to the MATLAB
Workspace for the duration of the MATLAB session. (You can then save

it before exiting MATLAB if you want to retain it.)

® MATLAB Code File is the same as the File > Generate MATLAB Code
File command. It generates an MATLAB code file containing the video
input object and its configured parameters. You could then incorporate
the MATLAB code file into other MATLAB code or projects.

® MAT-File saves the video input object and its parameters to a MAT-file.

3-43

3 Using the Image Acquisition Tool GUI

3-44

3 Decide what object configuration(s) to export.

The Object Exporter dialog box lists the currently selected device format, as
well as any others you selected in the Hardware Browser during the tool
session. All formats are selected by default, meaning their configurations
will be saved. If you do not want to save a configuration, clear it from the
list.

4 Click Save.

If you exported to the MATLAB Workspace, the dialog box closes and the
data is saved to the MATLAB Workspace.

5 If you export to a MAT-file or MATLAB code file, an Export dialog box
opens. Select the save location and type a file name, and then click Save.

Note You can also save configuration information to an Image Acquisition
Tool (IAT) file that can then be loaded in the tool in a future session. See
“Saving Image Acquisition Tool Configurations” on page 3-41.

Saving and Copying the Image Acquisition Tool Session Log

Saving and Copying the Image Acquisition Tool Session
Log

In this section...

“About the Session Log” on page 3-45
“Saving the Session Log” on page 3-45

“Copying the Session Log” on page 3-46

About the Session Log

The session log dynamically records every action you perform in the Image
Acquisition Tool. The corresponding command-line functionality for actions
on a videoinput object or videosource object is reflected in the log. The title
displays the name of the device, as shown in the Hardware Browser.

You cannot directly edit in the Session Log pane. You can save the contents
to a MATLAB code file or copy it to another destination, and then edit the
contents.

Each device format has its own session log, independent of any other formats.
If you switch to a different device or format, the contents of the session log
will reflect the currently selected device. If you switch back to a previous node
in the Hardware Browser, the session log for that device will remain in the
same state it was in before you switched nodes.

Saving the Session Log
To save the contents to a MATLAB code file:

1 Click the Save the current session log to a file button in the Session
Log toolbar. You can also right-click in the log pane and select Save.

3-45

3 Using the Image Acquisition Tool GUI

3-46

| Session Log - Creative WebCam Notebook Ultra #2 (winvid... ™ O 2 X

4} af
Save the current session log to a file | 5

9
10 vid.FramesPerTrigger = 4;
11
12 criggerconfig(vid, 'manual'):;
13
14 preview (vid) ;
15
16 start (vid) ;
17
18 crigger (vid) ;
139
20 stoppreview (vid) ;
21 1

ki | _|J

2 In the Save Session Log dialog box, browse to the location where you want
to save the file.

3 Use the default name, imagqtoolSessionLog.m, or rename it.

4 When you click the Save button, the file will open in the MATLAB Editor.
You can then either edit it or close it.

Note that the entire contents of the session log is saved. If you just want to
save a portion of the log, use the Copy command instead.

Copying the Session Log

To copy all or part of the contents to the clipboard:

1 Select the portion of the log that you want to copy.

Saving and Copying the Image Acquisition Tool Session Log

The Copy command is then enabled.

2 Click the Copy button in the Session Log toolbar. You can also right-click
in the log pane and select Copy.

This copies the selected contents to the system clipboard.

3 Go to the application or file that you wish to copy it into, and right-click
Paste.

You can then edit or save it as your application allows.

3-47

3 Using the Image Acquisition Tool GUI

3-48

Registering a Third-Party Adaptor in the Image Acquisition

If you are using a third-party adaptor that requires the use of the
imagregister function, you can use this menu as an easier way to add the
adaptor. Note that this function is not documented in the Image Acquisition
Toolbox User’s Guide, but is documented in the Image Acquisition Toolbox
Adaptor Kit User’s Guide.

To register an adaptor:

1 Click Tools > Register a Third-Party Adaptor on the Image Acquisition
Tool menu.

2 In the Register a 3rd Party Adaptor dialog box, browse to the .d11 file
that represents your adaptor.

3 Select the file and click OK to register the adaptor.

Connecting to Hardware

To connect to an image acquisition device from within MATLAB, you must
create a video input object. This object represents the connection between
MATLAB and the device. You can use object properties to control various
aspects of the acquisition. Before you can create the object, you need several
pieces of information about the device that you want to connect to.

This chapter describes tasks related to establishing a connection between
MATLAB and an image acquisition device. For information about connecting
to an image acquisition device from a Simulink model, see Chapter 8, “Using
the From Video Device Block in Simulink”.

® “Getting Hardware Information” on page 4-2

® “Creating Image Acquisition Objects” on page 4-8

® “Configuring Image Acquisition Object Properties” on page 4-16

e “Starting and Stopping a Video Input Object” on page 4-23

® “Deleting Image Acquisition Objects” on page 4-27

® “Saving Image Acquisition Objects” on page 4-29

4 Connecting to Hardware

4-2

Getting Hardware Information

In this section...

“Getting Hardware Information” on page 4-2
“Determining the Device Adaptor Name” on page 4-2

“Determining the Device ID” on page 4-3

“Determining Supported Video Formats” on page 4-5

Getting Hardware Information

To access an image acquisition device, the toolbox needs several pieces of
information:

¢ The name of the adaptor the toolbox uses to connect to the image
acquisition device

¢ The device ID of the device you want to access

¢ The video format of the video stream or, optionally, a device configuration

file (camera file)

You use the imaghwinfo function to retrieve this information, as described
in the following subsections.

Note When using imaghwinfo to get information about a device, especially
devices that use a Video for Windows (VFW) driver, you might encounter
dialog boxes reporting an assertion error. Make sure that the software drivers
are installed correctly and that the acquisition device is connected to the
computer.

Determining the Device Adaptor Name

An adaptor is the software the toolbox uses to communicate with an image
acquisition device via its device driver. The toolbox includes adaptors for some
vendors of image acquisition equipment and for particular classes of image
acquisition devices. For the latest information about supported hardware,

Getting Hardware Information

visit the Image Acquisition Toolbox product page at the MathWorks Web site
(www.mathworks.com/products/imag).

To determine which adaptors are available on your system, call the
imaghwinfo function. The imaghwinfo function returns information about
the toolbox software and lists the adaptors available on the system in the
InstalledAdaptors field. In this example, there are two adaptors available
on the system.

imaghwinfo
ans =

InstalledAdaptors: {'matrox' ‘'winvideo'}
MATLABVersion: '7.4 (R2007a)'
ToolboxName: 'Image Acquisition Toolbox'
ToolboxVersion: '2.1 (R2007a)'

Note While every adaptor supported by the Image Acquisition Toolbox
software is installed with the toolbox, imaghwinfo lists only adaptors in
the InstalledAdaptors field that are loadable. That is, the device drivers
required by the vendor are installed on the system. Note, however, that
inclusion in the InstalledAdaptors field does not necessarily mean that
an adaptor is connected to a device.

Determining the Device ID

The adaptor assigns a unique number to each device with which it can
communicate. The adaptor assigns the first device it detects the device ID
1, the second it detects the device ID 2, and so on.

To find the device ID of a particular image acquisition device, call the
imaghwinfo function, specifying the name of the adaptor as the only
argument. When called with this syntax, imaghwinfo returns a structure
containing information about all the devices available through the specified
adaptor.

In this example, the imaghwinfo function returns information about all the
devices available through the Matrox® adaptor.

4-3

http://www.mathworks.com/products/imaq

4 Connecting to Hardware

info = imaqhwinfo('matrox');

info

AdaptorDl1lName: [1x73 char]
AdaptorDllVersion: '2.1 (R2007a)'
AdaptorName: 'matrox'
DeviceIDs: {[1]1}

DevicelInfo: [1x1 struct]

The fields in the structure returned by imaghwinfo provide the following

information.

Field Description

AdaptorDl11lName Text string that identifies the name of the adaptor
dynamic link library (DLL)

AdaptorDl1lVersion Information about the version of the adaptor DLL

AdaptorName Name of the adaptor

DevicelDs Cell array containing the device IDs of all the
devices accessible through this adaptor

DevicelInfo Array of device information structures. See

“Getting More Information About a Particular
Device” on page 4-4 for more information.

4-4

Getting More Information About a Particular Device

If an adaptor provides access to multiple devices, you might need to find out
more information about the devices before you can select a device ID. The
DevicelInfo field is an array of device information structures. Each device
information structure contains detailed information about a particular device
available through the adaptor.

To view the information for a particular device, you can use the device ID as a
reference into the DeviceInfo structure array. Call imaghwinfo again, this
time specifying a device ID as an argument.

dev_info = imaghwinfo('matrox',1)

dev_info

Getting Hardware Information

DefaultFormat: 'M_RS170'
DeviceFileSupported: 1
DeviceName: 'Orion'
DevicelID: 1
ObjectConstructor: 'videoinput('matrox', 1)
SupportedFormats: {1x10 cell}

The fields in the device information structure provide the following
information about a device.

Field Description

DefaultFormat Text string that identifies the video format used by
the device if none is specified at object creation time

DeviceFileSupported | If set to 1, the device supports device configuration
files; otherwise 0. See “Using Device Configuration
Files (Camera Files)” on page 4-13 for more
information.

DeviceName Descriptive text string, assigned by the adaptor,
that identifies the device

DevicelID ID assigned to the device by the adaptor

ObjectConstructor Default syntax you can use to create a video input
object to represent this device. See “Creating
Image Acquisition Objects” on page 4-8 for more
information.

SupportedFormats Cell array of strings that identify the video
formats supported by the device. See “Determining
Supported Video Formats” on page 4-5 for more
information.

Determining Supported Video Formats

The video format specifies the characteristics of the images in the video
stream, such as the image resolution (width and height), the industry
standard used, and the size of the data type used to store pixel information.

4-5

4 Connecting to Hardware

4-6

Image acquisition devices typically support multiple video formats. You can
specify the video format when you create the video input object to represent
the connection to the device. See “Creating Image Acquisition Objects” on
page 4-8 for more information.

Note Specifying the video format is optional; the toolbox uses one of the
supported formats as the default.

To determine which video formats an image acquisition device supports, look
in the SupportedFormats field of the DeviceInfo structure returned by the
imaghwinfo function. To view the information for a particular device, call
imaghwinfo, specifying the device ID as an argument.

dev_info = imaghwinfo('matrox',1)

dev_info

DefaultFormat: 'M_RS170'
DeviceFileSupported: 1
DeviceName: 'Orion'
DevicelID: 1
ObjectConstructor: 'videoinput('matrox', 1)
SupportedFormats: {1x10 cell}

The DefaultFormat field lists the default format selected by the toolbox. The
SupportedFormats field is a cell array containing text strings that identify
all the supported video formats. The toolbox assigns names to the formats
based on vendor-specific terminology. If you want to specify a video format
when you create an image acquisition object, you must use one of the text
strings in this cell array. See “Creating Image Acquisition Objects” on page
4-8 for more information.

celldisp(dev_info.SupportedFormats)
ans{1} =
M_RS170

ans{2} =

Getting Hardware Information

M_RS170_VIA_RGB
ans{3} =
M_CCIR

ans{4} =
M_CCIR_VIA RGB
ans{5} =
M_NTSC

ans{6} =
M_NTSC_RGB
ans{7} =
M_NTSC_YC
ans{8} =

M_PAL

ans{9} =
M_PAL_RGB
ans{10} =

M_PAL_YC

4 Connecting to Hardware

4-8

Creating Image Acquisition Objects

In this section...

“Types of Objects” on page 4-8

“Video Input Objects” on page 4-8

“Video Source Objects” on page 4-8

“Creating a Video Input Object” on page 4-9

“Specifying the Video Format” on page 4-11

“Specifying the Selected Video Source Object” on page 4-14

“Getting Information About a Video Input Object” on page 4-15

Types of Objects

After you get information about your image acquisition hardware, described in
“Getting Hardware Information” on page 4-2, you can establish a connection
to the device by creating an image acquisition object. The toolbox uses two
types of image acquisition objects:

¢ Video input object

® Video source object

Video Input Objects

A video input object represents the connection between MATLAB and a video
acquisition device at a high level. You must create the video input object
using the videoinput function. See “Creating a Video Input Object” on page
4-9 for more information.

Video Source Objects

When you create a video input object, the toolbox automatically creates one or
more video source objects associated with the video input object. Each video
source object represents a collection of one or more physical data sources that
are treated as a single entity. The number of video source objects the toolbox
creates depends on the device and the video format you specify.

Creating Image Acquisition Objects

At any one time, only one of the video source objects, called the selected
source, can be active. This is the source used for acquisition. The toolbox
selects one of the video source objects by default, but you can change this
selection. See “Specifying the Selected Video Source Object” on page 4-14
for more information.

The following figure illustrates how a video input object acts as a container
for one or more video source objects.

Videa input abjedt

Currently selected — - Videa Video Video
source saure SOUNE SOUNE e
object object object

Relationship of Video Input Objects and Video Source Objects

For example, a Matrox frame grabber device can support eight physical
connections, which Matrox calls channels. These channels can be configured in
various ways, depending upon the video format. If you specify a monochrome
video format, such as RS170, the toolbox creates eight video source objects,
one object for each of the eight channels on the device. If you specify a color
video format, such as NTSC RGB, the Matrox device uses three physical
channels to represent one RGB connection, where each physical connection
provides the red data, green data, and blue data separately. With this format,
the toolbox only creates two video source objects for the same device.

Creating a Video Input Object

To create a video input object, call the videoinput function specifying the
adaptor name, device ID, and video format. You retrieved this information
using the imaghwinfo function (described in “Getting Hardware Information”
on page 4-2). The only required argument is the adaptor name. The toolbox
can use default values for the device ID and video format.

This example creates a video input object to represent the connection to a
Matrox image acquisition device. The imaghwinfo function includes the

4-9

4 Connecting to Hardware

default videoinput syntax in the ObjectConstructor field of the device
information structure.

vid = videoinput('matrox');

This syntax uses the default video format listed in the DefaultFormat field of
the data returned by imaghwinfo. You can optionally specify the video format.
See “Specifying the Video Format” on page 4-11 for more information.

Viewing a Summary of a Video Input Object

To view a summary of the characteristics of the video input object you created,
enter the variable name you assigned to the object at the command prompt.
For example, this is the summary for the object vid.

vid
@ summary of video Input Object Using 'Oricn'.

€ Acquisition Source(s=): CHO, CH1, CH2, CH3, CH4, CHS, CHE, and
CHT are available.

@ Acquisition Parameters: 'CHO' is the current selected source,
10 frames per trigger using the selected source.
'M_R&170' video data to be logmed upon START.
Grabbing first of every 1 frameis).
Log data to '‘memory' on trigoer.

Status: Waiting for START.
0 frames acquired since starting.
0 frames available for GETDATA.

@ Trigger Parameters: 1 'immediate' trigomer(s) on START.

The items in this list correspond to the numbered elements in the object
summary:

1 The title of the summary includes the name of the image acquisition
device this object represents. In the example, this is a Matrox Orion frame
grabber.

2 The Acquisition Source section lists the name of all the video source
objects associated with this video input object. For many objects, this list
might only contain one video source object. In the example, the Matrox

4-10

Creating Image Acquisition Objects

device supports eight physical input channels and, with the default video
format, the toolbox creates a video source object for each connection. For
an example showing the video source objects created with another video

format, see “Specifying the Video Format” on page 4-11.

3 The Acquisition Parameters section lists the values of key video input object
properties. These properties control various aspects of the acquisition,
such as the number of frames to acquire and the location where acquired
frames are stored. For information about these properties, see Chapter
5, “Acquiring Image Data”.

4 The Trigger Parameters section lists the trigger type configured for the
object and the number of times the trigger is to be executed. Trigger
execution initiates data logging, and the toolbox supports several types of
triggers. The example object is configured by default with an immediate
trigger. For more information about configuring triggers, see Chapter 5,
“Acquiring Image Data”.

5 The Status section lists the current state of the object. A video input object
can be in one of several states:

® Running or not running (stopped)
® Logging or not logging

® Previewing or not previewing

In the example, the object describes its state as Waiting for START. This
indicates it is not running. For more information about the running state,
see “Starting and Stopping a Video Input Object” on page 4-23. This section
also reports how many frames of data have been acquired and how many
frames are available in the buffer where the toolbox stores acquired frames.
For more information about these parameters, see “Controlling Logging
Parameters” on page 5-25.

Specifying the Video Format

You can optionally specify the format of the video stream when you create
a video input object as a third argument to the videoinput function. This
argument can take two forms:

® A text string specifying a video format

4-11

4 Connecting to Hardware

4-12

* A name of a device configuration file, also known as a camera file

The following sections describe these options. If you do not specify a video
format, the videoinput function uses one of the video formats supported by
the device. For Matrox and Data Translation® devices, it chooses the RS170
video format. For Windows devices, it uses the first RGB format in the list of
supported formats or, if no RGB formats are supported, the device’s default
format.

Using a Video Format String

To specify a video format as a text string, use the imaghwinfo function to
determine the list of supported formats. The imaghwinfo function returns
this information in the SupportedFormats field of the device information
structure. See “Determining Supported Video Formats” on page 4-5 for more
information.

In this example, each of the text strings is a video format supported by a
Matrox device.

info = imaghwinfo('matrox');
info.DevicelInfo.SupportedFormats

ans =
Columns 1 through 4

'M_RS170" 'M_RS170_VIA_RGB' 'M_CCIR' 'M_CCIR_VIA_RGB'
Columns 5 through 8
'M_NTSC' 'M_NTSC_RGB' 'M_NTSC_YC' 'M_PAL'
Columns 9 through 10
'M_PAL_RGB' 'M_PAL_YC'
For Matrox devices, the toolbox uses the RS170 format as the default. (To find

out which is the default video format, look in the DefaultFormat field of the
device information structure returned by the imaghwinfo function.)

Creating Image Acquisition Objects

Note For Matrox devices, the M_NTSC_RGB format string represents a
component video format.

This example creates a video input object, specifying a color video format.

vid2 = videoinput('matrox', 1, 'M_NTSC_RGB');

Using Device Configuration Files (Camera Files)

For some devices, you can use a device configuration file, also known as a
camera file, to specify the video format as well as other configuration settings.
Image acquisition device vendors supply these device configuration files.

Note The toolbox ignores hardware trigger configurations included in a
device configuration file. To configure a hardware trigger, you must use the
toolbox triggerconfig function. See “Example: Using a Hardware Trigger”
on page 5-14 for more information.

For example, with Matrox frame grabbers, you can download digitizer
configuration format (DCF) files, in their terminology. These files configure
their devices to support particular cameras.

Some image acquisition device vendors provide utility programs you can use
to create a device configuration file or edit an existing one. See your hardware
vendor’s documentation for more information.

To determine if your image acquisition device supports device configuration
files, check the value of the DeviceFileSupported field of the device
information structure returned by imaghwinfo. See “Getting More
Information About a Particular Device” on page 4-4 for more information.

When you use a device configuration file, the value of the VideoFormat

property of the video input object is the name of the file, not a video format
string.

4-13

4 Connecting to Hardware

4-14

This example creates a video input object specifying a Matrox device
configuration file as an argument.

vid = videoinput('matrox',1, 'pulnix.decf')
summary of video Input Object Using 'Orion'.
Acquisition Scurce(s): CHO and CH1 are available.

Acquisition Parameters: 'CHO' iz the current selected source.
10 frames per trigger using the selected source.,
'Ciyvpulnix.def' video data to be logged upon START.
Grabbing first of every 1 frameis).
Log data to '‘memory' on trigager.

Trigger Parameters: 1 'immediate' trigger(s) on START.

Status: waiting for START.
0 framesz acquired since starting.
0 frames available for GETDATA.

Specifying the Selected Video Source Object

When you create a video input object, the toolbox creates one or more video
source objects associated with the video input object. The number of video
source objects created depends on the device and the video format. The
Source property of the video input object lists these video source objects.

To illustrate, this example lists the video source objects associated with the
video input object vid.

get(vid, 'Source')
Display Summary for Video Source Object Array:

Index: SourceName: Selected:
1 'CHO' ‘on'
2 "CH1' "off!
3 "CH2' "off!
4 'CH3' "off!
5 "CH4' "off!
6 "CH5' "off!
7 'CH6' "off!
8 "CH7' "off!

Creating Image Acquisition Objects

By default, the video input object makes the first video source object in the
array the selected source. To use another video source, change the value of
the SelectedSourceName property.

This example changes the currently selected video source object from CHO to
CH1 by setting the value of the SelectedSourceName property.

vid.SelectedSourceName = 'CH1';

Note The getselectedsource function returns the video source object that is
currently selected at the time the function is called. If you change the value
of the SelectedSourceName property, you must call the getselectedsource
function again to retrieve the new selected video source object.

Getting Information About a Video Input Object

After creating a video input object, you can get information about the device
it represents using the imaghwinfo function. When called with a video
input object as an argument, imaghwinfo returns a structure containing
information about the object such as the name of the adaptor, name of the
device, video resolution, and details of the vendor’s device driver and version.

out = imaghwinfo(vid)
out

AdaptorName: 'winvideo'
DeviceName: 'IBM PC Camera'
MaxHeight: 96

Maxwidth: 128
NativeDataType: 'uint8'
TotalSources: 1
VendorDriverDescription: 'Windows WDM Compatible Driver'
VendorDriverVersion: 'DirectX 9.0'

4-15

4 Connecting to Hardware

4-16

Configuring Image Acquisition Object Properties

In this section...

“About Image Acquisition Object Properties” on page 4-16
“Viewing the Values of Object Properties” on page 4-17
“Viewing the Value of a Particular Property” on page 4-19
“Getting Information About Object Properties” on page 4-20

“Setting the Value of an Object Property” on page 4-20

About Image Acquisition Object Properties

The video input object and the video source object both support properties that
enable you to control characteristics of the video image and how it is acquired.

The video input object properties control aspects of an acquisition that are
common to all image acquisition devices. For example, you can use the
FramesPerTrigger property to specify the amount of data you want to acquire.

The video source object properties control aspects of the acquisition associated
with a particular source. The set of properties supported by a video source
object varies with each device. For example, some image acquisition devices
support properties that enable you to control the quality of the image being
produced, such as Brightness, Hue, and Saturation.

With either type of object, you can use the same toolbox functions to

View a list of all the properties supported by the object, with their current
values

View the value of a particular property

Get information about a property

Set the value of a property

Configuring Image Acquisition Object Properties

Note Three video input object trigger properties require the use of a special
configuration function. For more information, see “Setting Trigger Properties”
on page 4-22.

Viewing the Values of Object Properties

To view all the properties of an image acquisition object, with their current
values, use the get function. You can also use the inspect function to view
a list of object properties in the Property Inspector window, where you can

also edit their values.

This example uses the get function to display a list of all the properties of the
video input object vid. “Viewing the Properties of a Video Source Object” on
page 4-18 describes how to do this for video source objects.

If you do not specify a return value, the get function displays the object
properties in four categories: General Settings, Callback Function Settings,
Trigger Settings, and Acquisition Sources.

get(vid)
General Settings:

DeviceID = 1
DiskLogger = []
DiskLoggerFrameCount = 0
EventLog = [1x0 struct]
FrameGrabInterval = 1
FramesAcquired = 0
FramesAvailable = 0
FramesPerTrigger = 10
Logging = off
LoggingMode = memory
Name = M_RS170-matrox-1
NumberOfBands = 1
Previewing = off
ReturnedColorSpace = grayscale
ROIPosition = [0 O 640 480]
Running = off
Tag =
Timeout = 10

4-17

4 Connecting to Hardware

4-18

Type = videoinput

UserData = []

VideoFormat = M_RS170
VideoResolution = [640 480]

Callback Function Settings:
ErrorFcn = @imaqcallback
FramesAcquiredFcn = []
FramesAcquiredFcnCount = 0
StartFcn = []

StopFcn = []
TimerFcn = []
TimerPeriod = 1
TriggerFcn = []

Trigger Settings:
InitialTriggerTime = [0 0 O O O O]
TriggerCondition = none
TriggerFrameDelay = 0
TriggerRepeat = 0
TriggersExecuted = 0
TriggerSource = none
TriggerType = immediate

Acquisition Sources:
SelectedSourceName = CHO
Source = [1x8 videosource]

Viewing the Properties of a Video Source Object

To view the properties supported by the video source object (or objects)
associated with a video input object, use the getselectedsource function to
retrieve the currently selected video source object. This example lists the
properties supported by the video source object associated with the video
input object vid. Note the device-specific properties that are included.

Configuring Image Acquisition Object Properties

Note The video source object for your device might not include device-specific
properties. For example, devices accessed with the 'winvideo' adaptor, such
as webcams, that use a Video for Windows (VFW) driver, may not provide a
way for the toolbox to programmatically query for device properties. Use the
configuration tools provided by the manufacturer to configure these devices.

get(getselectedsource(vid))
General Settings:
Parent = [1x1 videoinput]
Selected = on
SourceName = CHO
Tag =
Type = videosource

Device Specific Properties:
InputFilter = lowpass
UserOutputBit3 = off
UserOutputBit4 off
XScaleFactor
YScaleFactor =

I
—_

Viewing the Value of a Particular Property

To view the value of a particular property of an image acquisition object, use
the get function, specifying the name of the property as an argument. You
can also access the value of the property as you would a field in a MATLAB
structure.

This example uses the get function to retrieve the value of the Previewing
property.

get(vid, 'Previewing')
ans =
off

This example illustrates how to access the same property by referencing the
object as if it were a MATLAB structure.

4-19

4 Connecting to Hardware

4-20

vid.Previewing
ans =

off

Getting Information About Object Properties

To get information about a particular property, you can view the reference
page for the property in Chapter 14, “Property Reference” and Chapter 15,
“Properties — Alphabetical List”. You can also get information about a
particular property at the command line by using the propinfo or imaghelp
functions.

The propinfo function returns a structure that contains information about
the property such as its data type, default value, and a list of all possible
values, if the property supports such a list. This example uses propinfo to
get information about the LoggingMode property.

propinfo(vid, 'LoggingMode ")
ans =

Type: 'string'
Constraint: 'enum'
ConstraintValue: {'memory' ‘'disk' 'disk&memory'}
DefaultValue: 'memory'
ReadOnly: 'whileRunning'
DeviceSpecific: O

The imaghelp function returns reference information about the property with
a complete description. This example uses imaghelp to get information about
the LoggingMode property.

imaghelp(vid, 'LoggingMode"')

Setting the Value of an Object Property

To set the value of a particular property of an image acquisition object, use
the set function, specifying the name of the property as an argument. You
can also assign the value to the property as you would a field in a MATLAB
structure.

Configuring Image Acquisition Object Properties

Note Because some properties are read only, only a subset of all video input
and video source properties can be set.

This example uses the set function to set the value of the LoggingMode
property.

set(vid, 'LoggingMode’, 'disk&memory ')

To verify the new value of the property, use the get function.
get(vid, 'LoggingMode ")
ans =

disk&memory

This example sets the value of a property by assigning the value to the object
as if it were a MATLAB structure.

vid.LoggingMode = 'disk';
vid.LoggingMode

ans =
disk

Viewing a List of All Settable Object Properties

To view a list of all the properties of a video input object or video source object
that can be set, use the set function.

set(vid)

4-21

4 Connecting to Hardware

4-22

General Settings:
DiskLogger
FrameGrabInterval
FramesPerTrigger
LogoingMode: [{memory} | disk | disk&memory]
Hame
Returnedcolorspace: [{rob} | arayscale | ¥chcr]
ROIPosition
Tag
Timeout
UserData

callback Function Settings:
ErrorFcn: string -or- function handle -or- cell array
FramesaAcquiredFcn: string -or- function handle -or- cell array

FramesAcquiredFocnCount

StartFen: string -or- function handle -or- cell array
StopFen: string -or- function handle -or- cell array
TimerFcn: string -or- function handle -or- cell array
TimerPeriod

TriggerFocn: string -or- function handle -or- cell array

Trigger Settings:
TriggerFrameDelay
TriggerRepeat

Acquisition Sources:
SelectedSourceName: [{CHO} | CH1 | CH2 | CH3 | CH4]

Setting Trigger Properties

The values of certain trigger properties, TriggerType, TriggerCondition,
and TriggerSource, are interrelated. For example, some TriggerCondition
values are only valid with specific values of the TriggerType property.

To ensure that you specify only valid combinations for the values of these
properties, you must use two functions:

® The triggerinfo function returns all the valid combinations of values
for the specified video input object.
® The triggerconfig function sets the values of these properties.

For more information, see “Specifying Trigger Type, Source, and Condition”
on page 5-5.

Starting and Stopping a Video Input Object

Starting and Stopping a Video Input Object

When you create a video input object, you establish a connection between
MATLAB and an image acquisition device. However, before you can acquire
data from the device, you must start the object, using the start function.

start(vid);

When you start an object, you reserve the device for your exclusive use and
lock the configuration. Thus, certain properties become read only while
running.

An image acquisition object stops running when any of the following
conditions is met:

® The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object. For information about these properties,
see Chapter 5, “Acquiring Image Data”.

® A run-time error occurs.

¢ The object’s Timeout value is reached.

® You issue the stop function.

When an object is started, the toolbox sets the object’s Running property to

‘on'. When an object is not running, the toolbox sets the object’s Running
property to 'off'; this state is called stopped.

4-23

4 Connecting to Hardware

4-24

The following figure illustrates how an object moves from a running to a
stopped state.

o Dbject started:
Dbiject is videa stream Acquisitian is Acquisitian
credted. hegins. triggered. shaps.
: r
F [F2 [F3 [F4 |F5 [f6 |7 [/ [P [FI0 wmmm___'>
¥
L— Running="off' —a=}—— Running='on' ——— sl Running="off' —m

Transitions from Running to Stopped States
The following example illustrates starting and stopping an object:

1 Create an image acquisition object — This example creates a video
input object for a webcam image acquisition device. To run this example on
your system, use the imaghwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('winvideo',1);

2 Verify that the image is in a stopped state — Use the isrunning
function to determine the current state of the video input object.

isrunning(vid)
ans =
0

3 Configure properties To illustrate object states, set the video input
object’s TriggerType property to 'Manual'. To set the value of certain
trigger properties, including the TriggerType property, you must use the
triggerconfig function. See “Setting the Values of Trigger Properties”
on page 5-5 for more information.

triggerconfig(vid, 'Manual')

Starting and Stopping a Video Input Object

Configure an acquisition that takes several seconds so that you can see the
video input in logging state.

vid.FramesPerTrigger = 100;

4 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)
5 Verify that the image is running but not logging — Use the isrunning
and islogging functions to determine the current state of the video input

object. With manual triggers, the video input object is in running state
after being started but does not start logging data until a trigger executes.

isrunning(vid)

ans =

islogging(vid)

ans =

6 Execute the manual trigger — Call the trigger function to execute
the manual trigger.

trigger(vid)

While the acquisition is underway, check the logging state of the video
input object.

islogging(vid)

ans =

4-25

4 Connecting to Hardware

After it acquires the specified number of frames, the video input object
stops running.

isrunning(vid)

ans =

7 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

4-26

Deleting Image Acquisition Obijects

Deleting Image Acquisition Objects

When you finish using your image acquisition objects, use the delete function
to remove them from memory. After deleting them, clear the variables

that reference the objects from the MATLAB workspace by using the clear
function.

Note When you delete a video input object, all the video source objects
associated with the video input object are also deleted.

To illustrate, this example creates several video input objects and then
deletes them.

1 Create several image acquisition objects — This example creates
several video input objects for a single webcam image acquisition device,
specifying several different video formats. To run this example on your
system, use the imaghwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('winvideo',1);

vid2 = videoinput('winvideo',1, 'RGB24_176x144");
vid3 = videoinput('winvideo',1,'YV12_352x288"');

2 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

You can delete image acquisition objects one at a time, using the delete
function.

delete(vid)

4-27

4 Connecting to Hardware

You can also delete all the video input objects that currently exist in
memory in one call to delete by using the imaqfind function. The
imagfind function returns an array of all the video input objects in memory.

imaqfind

Video Input Object Array:

Index: Type: Name:

1 videoinput RGB555_128x96-winvideo-1
2 videoinput RGB24_176x144-winvideo-1
3 videoinput YV12_352x288-winvideo-1

Nest a call to the imagfind function within the delete function to delete
all these objects from memory.

delete(imaqfind)

Note that the variables associated with the objects remain in the workspace.

whos
Name Size Bytes Class
vid 1x1 1120 videoinput object
vid2 1x1 1120 videoinput object
vid3 1x1 1120 videoinput object
vids 1x3 1280 videoinput object

These variables are not valid image acquisition objects.
isvalid(vid)

ans =
0

To remove these variables from the workspace, use the clear command.

4-28

Saving Image Acquisition Obijects

Saving Image Acquisition Objects

In this section...

“Using the save Command” on page 4-29

“Using the obj2mfile Command” on page 4-29

Using the save Command

You can save a video input object to a MAT-file just as you would any
workspace variable by using the save command. This example saves the
video input object vid to the MAT-file myvid.mat.

save myvid vid

When you save a video input object, all the video source objects associated
with the video input object are also saved.

To load an image acquisition object that was saved to a MAT-file into the
MATLAB workspace, use the 1oad command. For example, to load vid from
MAT-file myvid.mat, use

load myvid

Note The values of read-only properties are not saved. When you load an
image acquisition object into the MATLAB workspace, read-only properties
revert to their default values. To determine if a property is read only, use the
propinfo function or read the property reference page.

Using the obj2mfile Command

Another way to save a video input object is to create an M-file that contains
the set of commands used to create the video input object and configure its
properties. You can use the obj2mfile function to create such an M-file.
When you execute the M-file, it can create a new video input object or reuses
an existing video input object, if one exists that has the same video format
and adaptor.

4-29

4 Connecting to Hardware

4-30

Acquiring Image Data

The core of any image acquisition application is the data acquired from the
input device. A trigger is the event that initiates the acquisition of image
frames, a process called logging. A trigger event occurs when a certain
condition is met. For some types of triggers, the condition can be the execution
of a toolbox function. For other types of triggers, the condition can be a signal
from an external source that is monitored by the image acquisition hardware.

This chapter describes how to configure and use the various triggering options
supported by the Image Acquisition Toolbox software and control other
acquisition parameters.

e “Data Logging” on page 5-2

® “Setting the Values of Trigger Properties” on page 5-5

e “Specifying the Trigger Type” on page 5-8

¢ “Controlling Logging Parameters” on page 5-25

¢ “Waiting for an Acquisition to Finish” on page 5-36

e “Managing Memory Usage” on page 5-40

¢ “Logging Image Data to Disk” on page 5-45

5 Acquiring Image Data

Data Logging

In this section...

“Overview” on page 5-2

“Trigger Properties” on page 5-3

Overview

When a trigger occurs, the toolbox sets the object’s Logging property to 'on'
and starts storing the acquired frames in a buffer in memory, a disk file,

or both. When the acquisition stops, the toolbox sets the object’s Logging
property to 'off'.

The following figure illustrates when an object moves into a logging state and
the relation between running and logging states.

bjectis
Object is storted; video hequisition is Ayuisifian
creted. stream begins. triggered. stops.
Y ¥ r ¥
No frames F [f2 [F3 [f4 |55 [f0 |F [F8 [P0 |F1O0 we.;.“,mm___'>
r
Logging="off' — ! logging="on' —s~1— logging="off' — e
— Running="off' —m-]— Running='an’ —— ! Rumning="offf —m

Logging State Transitions

Note After Logging is set to 'off', it is possible that the object might still
be logging data to disk. To determine when disk logging is complete, check
the value of the DiskLoggerFrameCount property. For more information, see
“Logging Image Data to Disk” on page 5-45.

Data Logging

The following figure illustrates a group of frames being acquired from the
video stream and being logged to memory and disk.

Start object: Trigger acurs;
viden stream data logaing Acquiition
begins. begins. staps.

h Y
Flo|f (R | F (F5 [F& [F7 [FE |F§ [FIOFT|F12(F13 (R4 ([F3 'i'"idensfraum.._)

Taal bax lags imoge
frames fo memary

and,/ar disk file.

v T} fik
Memary buffer |F6 |F7 |FE |F9 |F10 Fé |F7 [FB |F? [F10

Overview of Data Logging

Trigger Properties

The video input object supports several properties that you can use to
configure aspects of trigger execution. Some of these properties return
information about triggers. For example, to find out when the first trigger
occurred, look at the value of the InitialTriggerTime property. Other
properties enable you to control trigger behavior. For example, you use the
TriggerRepeat property to specify how many additional times an object
should execute a trigger.

The following table provides a brief description of all the trigger-related
properties supported by the video input object. For information about how to
set these properties, see “Setting the Values of Trigger Properties” on page 5-5.

5 Acquiring Image Data

5-4

Property

Description

InitialTriggerTime

Reports the absolute time when the first trigger
executed.

TriggerCondition

Specifies the condition that must be met for

a trigger to be executed. This property is
always set to 'none' for immediate and manual
triggers.

TriggerFcn

Specifies the callback function to execute when
a trigger occurs. For more information about
callbacks, see Chapter 7, “Using Events and
Callbacks”.

TriggerFrameDelay

Specifies the number of frames to skip before
logging data to memory, disk, or both. For more
information, see “Delaying Data Logging After a
Trigger” on page 5-33.

TriggerRepeat

Specifies the number of additional times to
execute a trigger. If the value of TriggerRepeat
is O (zero), the trigger executes but is not
repeated any additional times. For more
information, see “Specifying Multiple Triggers”
on page 5-34.

TriggersExecuted

Reports the number of triggers that have been
executed.

TriggerSource

Specifies the source to monitor for a trigger
condition to be met. This property is always set
to 'none’' for immediate and manual triggers.

TriggerType

Specifies the type of trigger: 'immediate’,
'manual', or 'hardware'. Use the triggerinfo
function to determine whether your image
acquisition device supports hardware triggers.

Setting the Values of Trigger Properties

Setting the Values of Trigger Properties

In this section...

“About Trigger Properties” on page 5-5
“Specifying Trigger Type, Source, and Condition” on page 5-5

About Trigger Properties

Most trigger properties can be set using the same methods you use to set any
other image acquisition object property: using the set function or referencing
the property as you would a field in a structure. For example, you can use the
set function to specify the value of the TriggerRepeat property, where vid is
a video input object created using the videoinput function.

set(vid, 'TriggerRepeat',Inf)

For more information, see “Configuring Image Acquisition Object Properties”
on page 4-16.

Some trigger properties, however, are interrelated and require the use of

the triggerconfig function to set their values. These properties are the
TriggerType, TriggerCondition, and TriggerSource properties. For
example, some TriggerCondition values are only valid when the value of the
TriggerType property is 'hardware’.

Specifying Trigger Type, Source, and Condition

Setting the values of the TriggerType, TriggerSource, and
TriggerCondition properties can be a two-step process:

1 Determine valid configurations of these properties by calling the
triggerinfo function.

2 Set the values of these properties by calling the triggerconfig function.

For an example of using these functions, see “Example: Using a Hardware
Trigger” on page 5-14.

5-5

5 Acquiring Image Data

5-6

Determining Valid Configurations

To find all the valid configurations of the TriggerType, TriggerSource, and
TriggerCondition properties, use the triggerinfo function, specifying a
video input object as an argument.

config = triggerinfo(vid);

This function returns an array of structures, one structure for each valid
combination of property values. Each structure in the array is made up of
three fields that contain the values of each of these trigger properties. For
example, the structure returned for an immediate trigger always has these
values:

TriggerType: 'immediate'
TriggerCondition: 'none’
TriggerSource: 'none'’

A device that supports hardware configurations might return the following
structure.

TriggerType: 'hardware'
TriggerCondition: 'risingEdge’
TriggerSource: 'TTL'

Note The text strings used as the values of the TriggerCondition and
TriggerSource properties are device specific. Your device, if it supports
hardware triggers, might support different condition and source values.

Configuring Trigger Type, Source, and Condition Properties

To set the values of the TriggerType, TriggerSource, and TriggerCondition
properties, you must use the triggerconfig function. You specify the value
of the property as an argument to the function.

For example, this code sets the values of these properties for a hardware
trigger.

triggerconfig(vid, 'hardware', 'risingEdge','TTL")

Setting the Values of Trigger Properties

If you are specifying a manual trigger, you only need to specify the trigger
type value as an argument.

triggerconfig(vid, 'manual')

You can also pass one of the structures returned by the triggerinfo function
to the triggerconfig function and set all three properties at once.

triggerconfig(vid, config(1))

See the triggerconfig function documentation for more information.

5-7

5 Acquiring Image Data

Specifying the Trigger Type

In this section...

“Comparison of Trigger Types” on page 5-8
“Example: Using an Immediate Trigger” on page 5-9
“Example: Using a Manual Trigger” on page 5-12
“Example: Using a Hardware Trigger” on page 5-14
“Setting DCAM-Specific Trigger Modes” on page 5-18

Comparison of Trigger Types

To specify the type of trigger you want to execute, set the value of

the TriggerType property of the video input object. You must use the
triggerconfig function to set the value of this property. The following table
lists all the trigger types supported by the toolbox, with information about
when to use each type of trigger.

Comparison of Trigger Types

TriggerSource
and

TriggerType | TriggerCondition
Value Values Description

"immediate' Always 'none' The trigger occurs automatically,
immediately after the start function
is issued. This is the default trigger
type. For more information, see
“Example: Using an Immediate
Trigger” on page 5-9.

'manual'’ Always 'none' The trigger occurs when you issue
the trigger function. A manual
trigger can provide more control over
image acquisition. For example,
you can monitor the video stream
being acquired, using the preview
function, and manually execute the

Specifying the Trigger Type

Comparison of Trigger Types (Continued)

TriggerSource
and
TriggerType | TriggerCondition
Value Values Description
trigger when you observe a particular
condition in the scene. For more
information, see “Example: Using a
Manual Trigger” on page 5-12.
"hardware' Device-specific Hardware triggers are external

signals that are processed directly by
the hardware. This type of trigger

1s used when synchronization with
another device is part of the image
acquisition setup or when speed is
required. A hardware device can
process an input signal much faster
than software. For more information,
see “Example: Using a Hardware
Trigger” on page 5-14.

Note Only a subset of image
acquisition devices supports
hardware triggers. To determine
the trigger types supported by your
device, see “Determining Valid
Configurations” on page 5-6.

Example: Using an Immediate Trigger

To use an immediate trigger, simply create a video input object. Immediate
triggering is the default trigger type for all video input objects. With an
immediate trigger, the object executes the trigger immediately after you start
the object running with the start command. The following figure illustrates
an immediate trigger.

5-9

5 Acquiring Image Data

Startaccurs, video

stream begins; -
immediate trigger Acquisition
O, sfaps.

| FromesPerigger=5__y

r k4
FI |F2 |F3 (F4 |F5 [F& |F7 |FB [F§ |FI0 ﬁda;.gneum___>

Toolbax bgs
frames fo

buffer.

R |F (R [FS

Memary buffer

Immediate Trigger
The following example illustrates how to use an immediate trigger:

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaghwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('matrox',1);

Verify that the object has not acquired any frames.

get(vid, 'FramesAcquired')
ans =

0

2 Configure properties — To use an immediate trigger, you do not have to
configure the TriggerType property because 'immediate’ is the default
trigger type. You can verify this by using the triggerconfig function
to view the current trigger configuration or by viewing the video input
object’s properties.

5-10

Specifying the Trigger Type

triggerconfig(vid)
ans =

TriggerType: 'immediate'
TriggerCondition: 'none’
TriggerSource: 'none'’

This example sets the value of the FramesPerTrigger property to 5. (The
default is 10 frames per trigger.)

set(vid, 'FramesPerTrigger',5)

3 Start the image acquisition object — Call the start function to start
the image acquisition object. By default, the object executes an immediate
trigger and acquires five frames of data, logging the data to a memory
buffer. After logging the specified number of frames, the object stops
running.

start(vid)

To verify that the object acquired data, view the value of the
FramesAcquired property. The object updates the value of this property as
it acquires data.

vid.FramesAcquired
ans =

To execute another immediate trigger, you must restart the object. Note,
however, that this deletes the data acquired by the first trigger. To execute
multiple immediate triggers, specify a value for the TriggerRepeat
property. See “Specifying Multiple Triggers” on page 5-34 for more
information.

4 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-11

5 Acquiring Image Data

5-12

Example: Using a Manual Trigger

To use a manual trigger, create a video input object and set the value of the
TriggerType property to 'manual'. A video input object executes a manual
trigger after you issue the trigger function. The following figure illustrates a
manual trigger.

Start accurs; Manual
viden stream trigger haquisifian
begins. accurs. stops.

L_FramesPerTrigoer=l —m-

F b J
FI_[F2 [F3 [F4 [FS [Fb |F7 |/ |F |F0|FT|F2|F3|F4 me,;,smm___>

Taalbax lgs
frames to

butfer.

B [F5 |F6 |FF | FB
Memary buffer

Manual Trigger
The following example illustrates how to use a manual trigger:

1 Create an image acquisition object — This example creates a video
input object for a webcam image acquisition device. To run this example on
your system, use the imaghwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('winvideo',1);
Verify that the object has not acquired any frames.

get(vid, 'FramesAcquired')
ans =
0

2 Configure properties — Set the video input object’s TriggerType
property to '‘Manual'. To set the values of certain trigger properties,

Specifying the Trigger Type

including the TriggerType property, you must use the triggerconfig
function. See “Setting the Values of Trigger Properties” on page 5-5 for
more information.

triggerconfig(vid, 'Manual')

This example also sets the value of the FramesPerTrigger property to 5.
(The default is 10 frames per trigger.)

set(vid, 'FramesPerTrigger',5)

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid);

The video object is now running but not logging. With manual triggers, the
video stream begins when the object starts but no frames are acquired
until the trigger executes.

isrunning(vid)

ans =

islogging(vid)
ans =
0

Verify that the object has still not acquired any frames.

get(vid, 'FramesAcquired')
ans =
0

4 Execute the manual trigger — Call the trigger function to execute
the manual trigger.

trigger(vid)

5-13

5 Acquiring Image Data

The object initiates the acquisition of five frames. Check the
FramesAcquired property again to verify that five frames have been
acquired.

get(vid, 'FramesAcquired')
ans =
5

After it acquires the specified number of frames, the video input object
stops running.

isrunning(vid)

ans =

To execute another manual trigger, you must first restart the video input
object. Note that this deletes the frames acquired by the first trigger. To
execute multiple manual triggers, specify a value for the TriggerRepeat
property. See “Specifying Multiple Triggers” on page 5-34 for more
information.

5 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Example: Using a Hardware Trigger

To use a hardware trigger, create a video input object and set the value of the
TriggerType property to 'hardware'. You must also specify the source of the
hardware trigger and the condition type. The hardware monitors the source
you specify for the condition you specify. The following figure illustrates a
hardware trigger. For hardware triggers, the video stream does not start
until the trigger occurs.

5-14

Specifying the Trigger Type

Note Trigger sources and the conditions that control hardware triggers are
device specific. Use the triggerinfo function to determine whether your
1mage acquisition device supports hardware triggers and, if it does, which
conditions you can configure. Refer to the documentation that came with
your device for more detailed information about its hardware triggering
capabilities.

Start object;
hardware Trigger
manitars trigger condifian met: hequition
SOUTCE. trigger occurs. shps.
| FramesPerTrigger=5 —m-
r r
Ha frames Fl|F2 |F [FM |F5 [Fi |FF [F8 |FY \l'.;le.;.gtreum___>
Toolbax lags
frames ta
huffer.

h 4
F1 [FI (F3 |[F4 |F5
Memary buffer

Hardware Trigger
The following example illustrates how to use a hardware trigger:

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaghwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code. The device must support hardware triggers.

vid = videoinput('matrox',1);
2 Determine valid trigger property configurations — Use the

triggerinfo function to determine if your image acquisition device
supports hardware triggers, and if it does, to find out valid configurations of

5-15

5 Acquiring Image Data

5-16

the TriggerSource and TriggerCondition properties. See “Determining
Valid Configurations” on page 5-6 for more information.

In this example, triggerinfo returns the following valid trigger
configurations.

triggerinfo(vid)
Valid Trigger Configurations:

TriggerType: TriggerCondition: TriggerSource:
‘immediate’ ‘none’ ‘none’
‘manual’ ‘none’ ‘none’

"hardware' 'risingEdge’ "TTL'

"hardware' 'fallingEdge' "TTL'

3 Configure properties — Configure the video input object trigger
properties to one of the valid combinations returned by triggerinfo. You
can specify each property value as an argument to the triggerconfig
function

triggerconfig(vid, 'hardware','risingEdge','TTL")

Alternatively, you can set these values by passing one of the structures
returned by the triggerinfo function to the triggerconfig function.

configs = triggerinfo(vid);
triggerconfig(vid,configs(3));

This example also sets the value of the FramesPerTrigger property to 5.
(The default is 10 frames per trigger.)

set(vid, 'FramesPerTrigger',5)

4 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)
The object is running but not logging any data.

isrunning(vid)

Specifying the Trigger Type

ans =

islogging(vid)
ans =
0

The hardware begins monitoring the trigger source for the specified
condition. When the condition is met, the hardware executes a trigger
and begins providing image frames to the object. The object acquires the
number of frames specified by the FramesPerTrigger property. View the
value of the FramesAcquired property to see how much data was acquired.
The object updates the value of this property as it acquires data.

vid.FramesAcquired
ans =

5

After it executes the trigger and acquires the specified number of frames,
the video input object stops running.

isrunning(vid)
ans =

0

To execute another hardware trigger, you must first restart the video input
object. Note that this deletes the frames acquired by the first trigger. To
execute multiple triggers, specify a value for the TriggerRepeat property.
See “Specifying Multiple Triggers” on page 5-34 for more information.

Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-17

5 Acquiring Image Data

5-18

Setting DCAM-Specific Trigger Modes

You can now use all trigger modes and all trigger inputs that DCAM cameras
support. Previous toolbox releases supported only trigger mode 0. Support for
additional trigger modes and inputs do not affect any existing code you use.

Control trigger functionality using the triggerinfo and triggerconfig
functions and the triggersource property. Before R2010a, one
triggersource was available, externalTrigger. Selecting externalTrigger
configures the camera to use trigger mode 0 with trigger source 0.

The triggersource property is now composed of the trigger type (internal or
external), the trigger source (0, 1, 2, etc.), and the mode number (0 through 5,
14 and 15). The following table summarizes the options.

Trigger Parameter External Multiple Frames
Mode Source Per Trigger

0 none yes yes

1 none yes no

2 (N >=2) yes no

3 N>=1) no yes

4 (N >=1) yes no

5 (N >=1) yes no

14 unknown unknown unknown

15 unknown unknown unknown

For example, the second triggersource for trigger mode 1 is called
externalTriggeri-model. To use mode 3, the triggersource is
internalTrigger-modes3.

Specifying the Trigger Type

Note Toolbox versions before R2010a supported DCAM trigger mode 0
with the first available triggersource as externalTrigger. The existing
externalTrigger property will be maintained so to prevent backward
compatibility issues. In addition, in order to preserve symmetry with the
new functionality, triggersource externalTrigger0-modeO, which is
synonymous, will also be supported. The new trigger modes do not work
before R2010a.

Usage Notes

If a trigger mode has multiple trigger sources (modes 0, 1, 2, 4, and 5), then
triggersource has a digit indicating the corresponding camera source, even
if only one camera source is available. For example, if the camera has only
a single triggersource available, the toolbox reports the triggersource
name as externalTriggerO-modeX. If the trigger mode does not have
multiple sources (mode 3), then no source digit appears in the name (i.e,
internalTriggerMode3 instead of internalTriggerMode3-Source0).

The DCAM adaptor includes a TriggerParameter property that is passed to
the camera when you set trigger configurations. The TriggerParameter
property is validated when you call START after selecting a hardware trigger
mode.

If the selected trigger mode prohibits multiple frames per trigger, then an
error appears when you call START without setting FramesPerTrigger to 1.

If the camera supports only trigger mode 0 with source 0, then the original
functionality of having only the externalTrigger triggersource is
supported.

Trigger modes 14 and 15 are vendor-specific and are assumed to be external
triggers and have no restrictions on any settings. You must validate any

settings you use.

The following sections detail the trigger modes.

5-19

5 Acquiring Image Data

5-20

Trigger Mode 0

This is the only trigger mode supported before R2010a. When a trigger is
received, a frame is acquired. You can acquire multiple frames per trigger
by switching the camera for hardware triggered mode to free running mode
when a triggered frame is acquired.

No parameter is required.

{{

Trigger U Y

Sensor exposure .y 1)
:Expusun' dutgtion is “SHUTTER” register value

~
N
Sensor readout i

data R

The camera starts the integration of the incoming light from the external
trigger input falling edge.

Specifying the Trigger Type

Trigger

Sensor exposure

Sensor readout

Trigger Mode 1

In this mode, the duration of the trigger signal is used to control the
integration time of the incoming light. This mode is used to synchronize the
exposure time of the camera to an external event.

No parameter is required.

{(
1]

H_T’ »)
Exposure d}l{atinn is trigger width

LS
*
N «

data R

The camera starts the integration of the incoming light from the external
trigger input falling edge. Integration time is equal to the low state time of
the external trigger input if triggersource is fallingEdge, otherwise it is
equal to the high state time.

Trigger Mode 2

This mode is similar to mode 1, except the duration of the trigger signal does
govern integration time. Instead the number of trigger signals received does.
Integration commences upon the start of the first trigger signal and continues
until the start of the Nth trigger signal.

Parameter N is required and describes the number of trigger signals in an
integration.

5-21

5 Acquiring Image Data

5-22

e U U U U

Sensor exposure T= r 1)
v R I W
Exposure duration is “Trigger llllllh.kL'r register value
AY
b
Y
3 ({
Sensor readout

data Y

The camera starts the integration of the incoming light from the first external
trigger input falling edge. At the Nth external trigger input falling edge,
integration stops. Parameter N is required and must be 2 or greater. (N >= 2).

Trigger Mode 3

Use this internal trigger mode to achieve a lower frame rate. When the
trigger generates internally, a frame is acquired and returned. A new frame
is not acquired for N x Tf when N is the parameter and Tf is the cycle time of
the fastest frame rate supported by the camera.

A parameter is required, as described above.

N x T (M is parameter, TE is cycle
timee of the fastest frame rare)

Trigper

:,J 1:J I
P ol
DN

. i
Sensor exposure f—>»t p
A\

\
Expysure duration is “SHUTTER” register value

i A\
Y Y
A A
Sensor readout 55

dats data

This is an internal trigger mode. The camera issues the trigger internally and
cycle time is N times of the cycle time of the fastest frame rate. Integration

Specifying the Trigger Type

Trigger

Sensor exposure

Sensor readout

time of incoming light is described in the shutter register. Parameter N is
required and must be 1 or greater (N >= 1).

Trigger Mode 4

This mode is the “multiple shutter preset mode.” It is similar to mode 1, but
the exposure time is governed by the shutter property. On each trigger,
shutter property defines the exposure duration. When N triggers are received,
a frame is acquired.

Parameter N is required and describes the number of triggers.

i il

A 4 4 4

-
\ Exposure numbers n‘n:\dclined by value

Exposure duration is “SHUTTER™ register value
b
b

multiple data

The camera starts integration of incoming light from the first external
trigger input falling edge and exposes incoming light at shutter time. Repeat
this sequence until the Nth external trigger input falling edge, then finish
integration. Parameter N is required and must be 1 or greater (N >= 1).

Trigger Mode 5

This mode is the “multiple shutter pulse width mode.” It is a combination of
modes 1 and 2. The exposure time is governed by the duration of the trigger
signal and a number of trigger signals can be integrated into a single readout.
If the trigger parameter is 1, this mode is degenerate with mode 1.

A parameter is required. The parameter describes the number of triggers.

5-23

5 Acquiring Image Data

Trigper

H -
A . A

A
A
Exposure numbers m:\rlclined by value

Exposure duration is trigger width Y
b
b

multiple data

Sensor exposure

riNgl

Sensor readout

The camera starts integration of incoming light from first the external trigger
input falling edge and exposes incoming light until the trigger is inactive.
Repeat this sequence until the Nth external trigger input falling edge, then
finish integration. Parameter N is required and must be 1 or greater (N >= 1).

Trigger Mode 14
This is a vendor-specific mode and no information is available. Consult the
documentation for your camera.

Trigger Mode 15
This is a vendor-specific mode and no information is available. Consult the
documentation for your camera.

5-24

Controlling Logging Parameters

Controlling Logging Parameters

In this section...

“Data Logging” on page 5-25

“Specifying Logging Mode” on page 5-25

“Specifying the Number of Frames to Log” on page 5-26
“Determining How Much Data Has Been Logged” on page 5-28
“Determining How Many Frames Are Available” on page 5-30
“Delaying Data Logging After a Trigger” on page 5-33
“Specifying Multiple Triggers” on page 5-34

Data Logging
The following subsections describe how to control various aspects of data
logging.

Specifying the logging mode
Specifying the number of frames to log

Determining how many frames have been logged since the object was
started

Determining how many frames are currently available in the memory
buffer

Delaying data logging after a trigger executes

Specifying multiple trigger executions

Specifying Logging Mode
Using the video input object LoggingMode property, you can control where the
toolbox logs acquired frames of data.

The default value for the LoggingMode property is 'memory'. In this mode,
the toolbox logs data to a buffer in memory. If you want to bring image data
into the MATLAB workspace, you must log frames to memory. The functions
provided by the toolbox to move data into the workspace all work with the

5-25

5 Acquiring Image Data

5-26

memory buffer. For more information, see “Bringing Image Data into the
MATLAB Workspace” on page 6-3.

You can also log data to a disk file by setting the LoggingMode property to
'disk' or to 'disk&memory'. By logging frames to a disk file, you create a
permanent record of the frames you acquire. For example, this code sets
the value of the LoggingMode property of the video input object vid to
‘disk&memory'.

set(vid, 'LoggingMode', 'disk&memory');

Because the toolbox stores the image frames in Audio Video Interleaved (AVI)
format, you can view the logged frames in any standard media player. For
more information, see “Logging Image Data to Disk” on page 5-45.

Specifying the Number of Frames to Log

In the Image Acquisition Toolbox software, you specify the amount of data
you want to acquire as the number of frames per trigger.

You specify the desired size of your acquisition as the value of the video input
object FramesPerTrigger property. By default, the value of this property is
10 frames per trigger, but you can specify any value. The following figure
illustrates an acquisition using the default value for the FramesPerTrigger
property. To see an example of an acquisition, see “Example: Acquiring 100
Frames” on page 5-28.

Controlling Logging Parameters

Start abject: o
immediate frigger Aequisition
execues. sfaps.

FramesPerTrigger=10 ——— =

b 4 h 4
Fo|F |F (K |Fs5 [F& (FF |FB [F9 |F10 [F1T|F12 |F13 [F14 |F15 'hf'ldeustra:lm...>

Toolbax lags
fromes fo

buffer.

)
F|FR |F (M |FS [F& |F7 [F& [FY |FI0

Memary buffer

Specifying the Amount of Data to Log

Note While you can specify any size acquisition, the number of frames

you can acquire is limited by the amount of memory you have available on
your system for image storage. A large acquisition can potentially fill all
available system memory. For large acquisitions, you might want to remove
frames from the buffer as they are logged. For more information, see “Moving
Multiple Frames into the Workspace” on page 6-4. To learn how to empty the
memory buffer, see “Freeing Memory” on page 5-42.

Specifying a Noncontiguous Acquisition

Although FramesPerTrigger specifies the number of frames to acquire, these
frames do not have to be captured contiguously from the video stream. You
can specify that the toolbox skip a certain number of frames between frames
it acquires. To do this, set the value of the FrameGrabInterval property.

Note The FrameGrabInterval property controls the interval at which the
toolbox acquires frames from the video stream (measured in frames). This
property does not control the rate at which frames are provided by the device,
otherwise known as the frame rate.

5-27

5 Acquiring Image Data

5-28

The following figure illustrates how the FrameGrabInterval property affects
an acquisition.

Start abject: o
immediate trigger Acguisitian
execues. staps.

FramesPerrigger=f ——

r
Fo|FR |F (M |F5 [F& |F7 [FE [F9 |F10 |F1T [F12 |F13 [F14 FlE'ﬁ"lda:usfre-:lm._.>

Toolbox lags
frames fo

buffer.

(R | | |F FrameGrabInterval=2
Memary buffer

Impact of FrameGrablnterval on Data Logging

Determining How Much Data Has Been Logged

To determine how many frames have been acquired by a video input object,
check the value of the FramesAcquired property. This property tells how
many frames the object has acquired since it was started. To determine how
many frames are currently available in the memory buffer, see “Determining
How Many Frames Are Available” on page 5-30.

Example: Acquiring 100 Frames

This example illustrates how you can specify the amount of data to be
acquired and determine how much data has been acquired. (For an example
of configuring a time-based acquisition, see “Example: Acquiring 10 Seconds
of Image Data” on page 6-5.)

1 Create an image acquisition object — This example creates a video
input object for a Windows image acquisition device. To run this example
on your system, use the imaghwinfo function to get the object constructor
for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('winvideo',1);

Controlling Logging Parameters

2 Configure properties — Specify the amount of data you want to acquire
as the number of frames per trigger. By default, a video input object
acquires 10 frames per trigger. For this example, set the value of this
property to 100.

set(vid, 'FramesPerTrigger',100)

3 Start the image acquisition object -— Call the start function to start
the image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of
data. To verify if the video input object is logging data, use the islogging
function.

islogging(vid)
ans =

1

The start function returns control to the command line immediately but
the object continues logging the data to the memory buffer. After acquiring
the specified number of frames, the object stops running and logging.

4 Check how many frames have been acquired — To verify that the
specified number of frames has been acquired, check the value of the
FramesAcquired property. Note that the object continuously updates the
value of the FramesAcquired property as the acquisition progresses. If you
view the value of this property several times during an acquisition, you can
see the number of frames acquired increase until logging stops.

vid.FramesAcquired
ans =

100

5 Clean up Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-29

5 Acquiring Image Data

Determining How Many Frames Are Available

The FramesAcquired property tells how many frames the object has logged
since it was started, described in “Determining How Much Data Has Been
Logged” on page 5-28. Once you move frames from the memory buffer
into the MATLAB workspace, the number of frames stored in the memory
buffer will differ from the FramesAcquired value. To determine how many
frames are currently available in the memory buffer, check the value of the
FramesAvailable property.

Note The FramesAvailable property tells the number of frames in the
memory buffer, not in the disk log, if LoggingMode is configured to 'disk' or
'disk&memory'. Because it takes longer to write frames to a disk file than
to memory, the number of frames stored in the disk log might lag behind
those stored in the memory buffer. To see how many frames are available in
the disk log, look at the value of the DiskLoggerFrameCount property. See
“Logging Image Data to Disk” on page 5-45 for more information.

This example illustrates the distinction between the FramesAcquired and the
FramesAvailable properties:

1 Create an image acquisition object — This example creates a video
input object for a Windows image acquisition device. To run this example
on your system, use the imaghwinfo function to get the object constructor
for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('winvideo',1);

2 Configure properties — For this example, configure an acquisition of 15
frames.

set(vid, 'FramesPerTrigger',15)

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

5-30

Controlling Logging Parameters

The object executes an immediate trigger and begins acquiring frames of
data. The start function returns control to the command line immediately
but the object continues logging the data to the memory buffer. After
logging the specified number of frames, the object stops running.

4 Check how many frames have been acquired — To determine how
many frames the object has acquired and how many frames are available
in the memory buffer, check the value of the FramesAcquired and
FramesAvailable properties.

vid.FramesAcquired

ans

15

vid.FramesAvailable

ans

15

The object updates the value of these properties continuously as it acquires
frames of data. The following figure illustrates how the object puts acquired

frames in the memory buffer as the acquisition progresses.

Start abject:

immediate trigger Aequisitian
EXEC UtEs. staps.
I FramesPerTrigger=15 — o
Fl|F |Fl F5 [F6 [F7 [F8 JF9 [F10 [F17 [F12 [F13 [F14 [R5 [Video stream. .. >
Taolbax lgs
frames ta
buffer.
Fl | A Fs [F& |FF (FB |F9 [FIO[F1T [F12 |F13 [F14 |F1§
Memary buffer

Frames Available After Initial Trigger Execution

5-31

5 Acquiring Image Data

5-32

5 Remove frames from the memory buffer — When you remove

frames from the memory buffer, the object decrements the value of the
FramesAvailable property by the number of frames removed.

To remove frames from the memory buffer, call the getdata function,
specifying the number of frames to retrieve. For more information about
using getdata, see “Bringing Image Data into the MATLAB Workspace”
on page 6-3.

data = getdata(vid,5);
After you execute the getdata function, check the values of the
FramesAcquired and FramesAvailable properties again. Notice that
the FramesAcquired property remains unchanged but the object has
decremented the value of the FramesAvailable property by the number of
frames removed from the memory buffer.

vid.FramesAcquired

ans =

15
vid.FramesAvailable
ans =

10

The following figure illustrates the contents of the memory buffer after
frames are removed.

Controlling Logging Parameters

T;: Atter
bgging &
camplete

F1 (F2 |F} R4 (FS [F& |F7 (FR |F9 [F10 |F11 |F12 [F13 |F14 [F15

Memary buffer Frameshequired=15
Framesdvailable=15

To: After

getdatn Fo [FF |FB |F9 [FQQFIT |F12 |F13 |F14 |F15
femaves 5

frames

Frameshaquired=15

Memory butier Framesdvailablk =10

Contents of Memory Buffer Before and After Removing Frames

6 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Delaying Data Logging After a Trigger

In some image acquisition setups, you might not want to log the first few
frames returned from your camera or other imaging device. For example,
some cameras require a short warmup time when activated. The quality of
the first few images returned by these cameras might be too dark to be useful
for your application.

To account for this characteristic of your setup, you can specify that the
toolbox skip a specified number of frames after a trigger executes. You use
the TriggerFrameDelay property to specify the number of frames you want to
skip before logging begins.

For example, to specify a delay of five frames before data logging begins after a
trigger executes, you would set the value of the TriggerFrameDelay property
to 5. The number of frames captured is defined by the FramesPerTrigger
property and is unaffected by the delay.

set(vid, 'TriggerFrameDelay',5);

This figure illustrates this scenario.

5-33

5 Acquiring Image Data

Start abject:
video stream Trigger Lagaing Acquiition
begims. accurs. begins. staps.

— TriggeFrame Deloy =5~ — FramesPerTrigger=5 —m
¥ ¥ r h 4
iR | F3 (K| FS (Fb|FF [FB | FD [FTI0 [F11 |F12 (F13 | F14 | videg stra:lm.._>

Toolbox lags frames

to buffer

F9 |F10 |F11 [F12 |F13
Memary buffer

Specifying a Delay Before Data Logging Begins

Specifying Multiple Triggers
When a trigger occurs, a video input object acquires the number of frames

specified by the FramesPerTrigger property and logs the data to a memory
buffer, a disk file, or both.

When it acquires the specified number of frames, the video input object
stops running. To execute another trigger, you must restart the video input
object. Restarting an object causes it to delete all the data it has stored in
the memory buffer from the previous trigger. To execute multiple triggers,
retaining the data from each trigger, you must specify a value for the
TriggerRepeat property.

Note that the TriggerRepeat property specifies the number of additional
times a trigger executes. For example, to execute a trigger three times, you
would set the value of the TriggerRepeat property to 2. In the following, vid
is a video input object created with the videoinput function.

set(vid, 'TriggerRepeat',2);

This figure illustrates an acquisition with three executions of a manual
trigger. In the figure, the FramesPerTrigger property is set to 3.

5-34

Controlling Logging Parameters

Startaccurs, Manval Manual Manual
video stream trigger trigaer frigger Acquiition
starts. OCCUrs OIS OIS staps.
¥ r r
Fl. [F2 [F (K [F5 |F6 |F7 |FB |F9 |F10 |F11 |F12 [F13 [F14 [F15 Ui:lensfreum..>

Toolbox logs

frames ta

buffer.

¥ ¥
F4 (F5 [F6 [FB |F9 |F10 |F12 [F13 |F14

Memary butfer

Executing Multiple Triggers

5-35

5 Acquiring Image Data

Waiting for an Acquisition to Finish

In this section...

“Using the wait Function” on page 5-36

“Example: Blocking the Command Line Until an Acquisition Completes”
on page 5-37

Using the wait Function

The start function and the trigger function are asynchronous functions.
That is, they start the acquisition of frames and return control to the
MATLAB command line immediately.

In some scenarios, you might want your application to wait until the
acquisition completes before proceeding with other processing. To do this, call
the wait function immediately after the start or trigger function returns.
The wait function blocks the MATLAB command line until an acquisition
completes or a timeout value expires, whichever comes first.

By default, wait blocks the command line until a video input object stops
running. You can optionally specify that wait block the command line

until the object stops logging. For acquisitions using an immediate trigger,
video input objects always stop running and stop logging at the same

time. However, with a manual trigger configured for multiple executions
(TriggerRepeat > 0), you can use wait immediately after each call to the
trigger function to block the command line while logging is in progress, even
though the object remains in running state throughout the entire acquisition.

The following figure illustrates the flow of control at the MATLAB command
line for a single execution of an immediate trigger and a manual trigger, with
and without the wait function. A hardware trigger is similar to the manual
trigger diagram, except that the acquisition is triggered by an external signal
to the camera or frame grabber board, not by the trigger function. For an
example, see “Example: Blocking the Command Line Until an Acquisition
Completes” on page 5-37.

5-36

Waiting for an Acquisition to Finish

[Immediats Trigger [Manual Trigger

videninput videainput videainput videninput

1 [| |

1 ' 1 1

start start start start

]] L L

wait trigger [Hioger

. F oo | ST
2, =5 S, = g Y
2 & 2 2 =h ool =
n,n [T B =

uo
uo
uo
uo
=

'
'
Ui

[
Biur GG —|
Fu1 6601 _i |""_ Lk

Buruuny
Burnuny

trigoer

uo,
En
e

uo

IunI:
unI: "

v i

Using wait to Block the MATLAB® Command Line

Example: Blocking the Command Line Until an
Acquisition Completes

The following example illustrates how to use the wait function to put a 60
second time limit on the execution of a hardware trigger. If the hardware

trigger does not execute within the time limit, wait returns control to the
MATLAB command line.

5-37

5 Acquiring Image Data

5-38

1 Create an image acquisition object — This example creates a video

input object for a Matrox image acquisition device. To run this example on
your system, use the imaghwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('matrox',1);

Configure a hardware trigger — Use the triggerinfo function

to determine valid configurations of the TriggerSource and
TriggerCondition properties. See “Determining Valid Configurations” on
page 5-6 for more information. In this example, triggerinfo returns the
following valid trigger configurations.

triggerinfo(vid)
Valid Trigger Configurations:

TriggerType: TriggerCondition: TriggerSource:
‘immediate’ ‘none’ ‘none’
‘manual’ ‘none’ ‘none’
"hardware’ 'risingEdge’ ‘TTL'
"hardware’ 'fallingEdge' ‘TTL!

Configure the video input object trigger properties to one of the valid
combinations returned by triggerinfo. You can specify each property
value as an argument to the triggerconfig function

triggerconfig(vid, 'hardware','risingEdge','TTL")

Alternatively, you can set these values by passing one of the structures
returned by the triggerinfo function to the triggerconfig function.

configs = triggerinfo(vid);
triggerconfig(vid,configs(3));

3 Configure other object properties — This example also sets the value

of the FramesPerTrigger property to configure an acquisition large enough
to produce a noticeable duration. (The default is 10 frames per trigger.)

set(vid, 'FramesPerTrigger',100)

Waiting for an Acquisition to Finish

4 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The start function sets the object running and returns control to the
command line.

5 Block the command line until the acquisition finishes — After the
start function returns, call the wait function.

wait(vid,60)

The wait function blocks the command line until the hardware trigger
fires and acquisition completes or until the amount of time specified by
the timeout value expires.

6 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-39

5 Acquiring Image Data

Managing Memory Usage

5-40

In this section...

“Memory Usage” on page 5-40

“Monitoring Memory Usage” on page 5-40
“Modifying the Frame Memory Limit” on page 5-41
“Freeing Memory” on page 5-42

Memory Usage

The first time it needs to allocate memory to store an image frame, the
toolbox determines the total amount of memory it has available to store
acquired image frames. By default, the toolbox sets this value, called the
frame memory limit, to equal all the physical memory that is available when
the toolbox is first accessed.

Image data can require a lot of memory. For example, even a relatively small
(96-by-128) 24-bit color image requires almost 37 K bytes for each frame.

whos
Name Size Bytes Class
rgb_image 96x128x3 36864 uint8 array

Monitoring Memory Usage

The toolbox includes a utility function, called imagmem, that provides
information about the toolbox’s current memory usage.

The imagmem function returns a structure that contains several memory
usage statistics including the total amount of physical memory available, the
amount of physical memory currently in use, and a value, called the memory
load, that characterizes the current memory usage.

To illustrate, this example calls imagmem and then uses the frame memory
limit and the current frame memory usage statistics to calculate how much
memory is left for image frame storage.

Managing Memory Usage

out = imagmem;
mem_left = out.FrameMemoryLimit - out.FrameMemoryUsed;

To see an example of using a callback function to monitor memory usage, see
“Example: Monitoring Memory Usage” on page 7-17.

Modifying the Frame Memory Limit

To enable your image acquisition application to work with more image frames,
you might want to increase the frame memory limit. Using the imagmem
function you can determine the current frame memory limit and specify a new
one. The following example illustrates this process.

1 Determine the current frame memory limit — This example calls the
imagmem function, requesting the value of the FrameMemoryLimit field.

out imaqgmem('FrameMemoryLimit')

out

15425536

2 Set the frame memory limit to a new value — When you call imagmem
with a numeric argument, it sets the FrameMemoryLimit field to the value.

imagmem(36000000)

3 Verify the frame memory limit setting — Call imagmem again,
requesting the value of the FrameMemoryLimit field.

out = imaqmem('FrameMemoryLimit')

out

36000000

5-41

5 Acquiring Image Data

5-42

Freeing Memory

At times, while acquiring image data, you might want to delete some or all
of the frames that are stored in memory. Using the flushdata function, you
can delete all the frames currently stored in memory or only those frames
associated with the execution of a trigger.

The following example illustrates how to use flushdata to delete all the
frames in memory or one trigger’s worth of frames.

1 Create an image acquisition object — This example creates a video
input object for a Windows image acquisition device. To run this example
on your system, use the imaghwinfo function to get the object constructor
for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('winvideo',1);

2 Configure properties — For this example, configure an acquisition of
five frames per trigger and, to show the effect of flushdata, configure
multiple triggers using the TriggerRepeat property.

vid.FramesPerTrigger = 5
vid.TriggerRepeat = 2;

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The object executes an immediate trigger, acquires five frames of data, and
repeats this trigger two more times. After logging the specified number of
frames, the object stops running.

Managing Memory Usage

To verify that the object acquired data, view the value of the
FramesAvailable property. This property reports how many frames are
currently stored in the memory buffer.

vid.FramesAvailable

ans

Delete a trigger’s worth of image data — Call the flushdata function,
specifying the mode 'triggers'. This deletes the frames associated with

15

the oldest trigger.

flushdata(vid, 'triggers');

The following figure shows the frames acquired before and after the call
to flushdata. Note how flushdata deletes the frames associated with
the oldest trigger.

T;: Atter
bgging &
camplete

Ta: After
all o
flushdata

To verify that the object deleted the frames, view the value of the
FramesAvailable property.

vid.FramesAvailable

ans

10

Framesdvailablk =10

F1 | F2 |F3 |F |F5 [F6 |[F7 |FB [FD |F10 [F1T |F12 [F13 [F14 |F15

Memory buffer Frameshequired=15
Framestvailoblz=15

Fo [K | FB [F9 [F0[FIT QF12 (F13 [F14 [F15

Memary huffer Frameshaquired=15

5-43

5 Acquiring Image Data

5-44

5 Empty the entire memory buffer — Calling flushdata without
specifying the mode deletes all the frames stored in memory.

flushdata(vid);

To verify that the object deleted the frames, view the value of the
FramesAvailable property.

vid.FramesAvailable
ans =

6 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Logging Image Data to Disk

Logging Image Data to Disk

In this section...

“Logging Data to Disk Using VideoWriter” on page 5-45
“Example: Logging Data to Disk Using VideoWriter” on page 5-46
“Logging Data to Disk Using an AVI File” on page 5-47
“Creating an AVI File Object for Logging” on page 5-49

“Example: Logging Data to Disk Using an AVI File” on page 5-51

Logging Data to Disk Using VideoWriter

While a video input object is running, you can log image data being acquired
to a disk file. Logging image data to disk provides a record of your data. You
can log data to several formats but VideoWriter is recommended, instead

of using an AVI file.

For the best performance, logging to disk requires a MATLAB VideoWriter
object, which is a MATLAB function, not an Image Acquisition Toolbox
function. After you create and configure a VideoWriter object, provide it to
the videoinput object’s DiskLogger property.

VideoWriter provides a number of different profiles that log the data in
different formats. The following example uses the Motion JPEG 2000 profile,
which can log single-banded (grayscale) data as well as multi-byte data.
Supported profiles are:

e 'Motion JPEG 2000' — Compressed Motion JPEG 2000 file.

e 'Archival' — Motion JPEG 2000 file with lossless compression.

e 'Motion JPEG AVI' — Compressed AVI file using Motion JPEG codec.

e 'Uncompressed AVI' — Uncompressed AVI file with RGB24 video.

5-45

5 Acquiring Image Data

5-46

Example: Logging Data to Disk Using VideoWriter

This example uses a GigE Vision device in a grayscale format (Mono10).

1 Create a video input object that accesses a GigE Vision image acquisition
device and uses grayscale format at 10 bits per pixel.

vidobj = videoinput('gige', 1, 'Mono10');

2 You can log acquired data to memory, to disk, or both. By default, data is
logged to memory. To change the logging mode to disk, configure the video
input object’s LoggingMode property.

set(vidobj, 'LoggingMode', 'disk')

3 Create a VideoWriter object with the profile set to Motion JPEG 2000.

logfile = VideoWriter('logfile.mj2, 'Motion JPEG 2000')

4 Configure the video input object to use the VideoWriter object.

vidobj.DiskLogger = logfile;

5 Now that the video input object is configured for logging data to a Motion
JPEG 2000 file, initiate the acquisition.

start(vidobj)

6 Wait for the acquisition to finish.

wait(vidobj, 5)

7 When logging large amounts of data to disk, disk writing occasionally lags
behind the acquisition. To determine whether all frames are written to
disk, you can optionally use the DiskLoggerFrameCount property.

while (vidobj.FramesAcquired ~= vidobj.DiskLoggerFrameCount)
pause(.1)
end

Logging Image Data to Disk

8 You can verify that the FramesAcquired and DiskLoggerFrameCount
properties have identical values by using these commands and comparing
the output.

vidobj.FramesAcquired
vidobj.DiskLoggerFrameCount

9 When the video input object is no longer needed, delete it and clear it from
the workspace.

delete(vidobj)
clear vidobj

Guidelines for Using a VideoWriter Object to Log Image Data
Note the following when using VideoWriter.

® You should not delete the video input object until logging has been
completed as indicated by the DiskLoggerFrameCount property equaling
the FramesAcquired property. Doing so will cause disk logging to stop
without all of the data being logged.

e [f START is called multiple times without supplying a new VideoWriter
object, the contents of the previous file will be erased when START is called.

® Once the VideoWriter object has been passed to the DiskLogger property,
you should not modify it.

Logging Data to Disk Using an AVI File

While a video input object is running, you can log the image data being
acquired to a disk file. Logging image data to disk provides a record of

your data. You can log data to several formats but we recommend using
VideoWriter, as described in the previous section. However, if you need to use
an AVI file, this section describes how to do that.

To set up data logging to disk:
1 Create a disk file to store the data. The toolbox logs the data to disk in

Audio Video Interleave (AVI) format because this format provides data
compression capabilities that allow for efficient storage. You must use the

5-47

5 Acquiring Image Data

5-48

MATLAB avifile function to create this log file. For more information,
see “Creating an AVI File Object for Logging” on page 5-49.

2 Set the value of the video input object LoggingMode property to 'disk' or
‘disk&memory'.

3 Set the value of the video input object DiskLogger property to the AVI
file object created in step 1.

The following figure shows how the toolbox adds frames to the AVI file when
a trigger occurs. With each subsequent trigger, the toolbox appends the
acquired frames to the end of the AVI file. The frames must have the same
dimensions. For an example of how to set up disk data logging, see “Example:
Logging Data to Disk Using an AVI File” on page 5-51.

Startocours;
viden stream Trigger Acquisition Trigger Aquisition
begins. accurs staps. acurs. 5t ps.

= FramesPerrigger=5 = = FramesPerrigger=5 =~

¥ ¥ o v
F1 [FI |F3 |F4 [FS [F& [F7 |F8 F15 [F16 |F17 | F1B [F1D (F20 (F2 'l'"v:lenstreun‘>

Toalbox lgs

frames fo disk
file.

Dk fie |F3 (F4 |F5 |F& [FT |F18 [F17 |F18 |F19 [F20

Logging Data to a Disk File

Note AVI files are limited to a bit-depth of 8 bits per pixel for each band. If
you have higher bit data, you should not log it to an AVI file since the AVI
format is restricted to 8-bit data. If you do log higher bit data to an AVI file, it
will be scaled and then logged as 8-bit data.

Logging Image Data to Disk

Creating an AVI File Object for Logging

To create an AVI file in the MATLAB environment, use the avifile function.
You specify the name of the AVI file to the avifile function. For example, to
create the AVI file named my_datalog.avi, enter this code at the MATLAB
command prompt.

aviobj = avifile('my_datalog.avi');

The avifile function returns an AVI file object. You can use the AVI file
object returned by the avifile function, aviobj, to modify characteristics
of the AVI file by setting the values of the object’s properties. For example,
you can specify the codec used for data compression or specify the desired
quality of the output.

For more information about AVI file objects, see the MATLAB avifile
documentation. For more information about using AVI files to log image
data, see the following topics.

* “Logging Grayscale Images Using an AVI File” on page 5-49
® “Guidelines for Using an AVI File Object to Log Image Data” on page 5-49
¢ “Closing the DiskLogger AVI file” on page 5-50

Logging Grayscale Images Using an AVI File

When logging images in grayscale format, such as RS170, you must set the
value of the AVI object’s Colormap property to be a grayscale colormap.
Otherwise, the image data in the AVI file will not display correctly.

This example uses the MATLAB gray function to create a grayscale colormap
and sets the value of the AVI file object’s Colormap property with this
colormap.

logfile = avifile('my_datalog.avi', 'Colormap',gray(256));

Guidelines for Using an AVI File Object to Log Image Data

When you specify the AVI file object as the value of the DiskLogger property,
you are creating a copy of the AVI file object. Do not access the AVI file object
using the original variable name, aviobj, while the video input object is using

5-49

5 Acquiring Image Data

5-50

the file for data logging. To avoid file access conflicts, keep in mind these
guidelines when using an AVI file for data logging:
® Do not close an AVI file object while it is being used for data logging.

® Do not use the AVI file addframe function to add frames to the AVI file
object while it is being used for data logging.

® Do not change the values of any AVI file object properties while it is being
used for data logging.

Note AVI files are limited to a bit-depth of 8 bits per pixel for each band. If
you have higher bit data, you should not log it to an AVI file since the AVI
format is restricted to 8-bit data. If you do log higher bit data to an AVI file, it
will be scaled and then logged as 8-bit data.

Closing the DiskLogger AVI file

When data logging has ended, close the AVI file to make it accessible
outside the MATLAB environment. Use the value of the video input object
DiskLogger property to reference the AVI file, rather than the variable
returned when you created the AVI file object (aviobj). See “Example:
Logging Data to Disk Using an AVI File” on page 5-51 for an example.

Before you close the file, make sure that the video input object has finished
logging frames to disk. Because logging to disk takes more time than logging
to memory, the completion of disk logging can lag behind the completion of
memory logging. To determine when logging to disk is complete, check the
value of the DiskLoggerFrameCount property; this property tells how many
frames have been logged to disk.

Note When you log frames to disk, the video input object queues the frames
for writing but the operating system might not perform the write operation
immediately. Closing an AVI file causes the data to be written to the disk.

Logging Image Data to Disk

Example: Logging Data to Disk Using an AVI File

This example illustrates how to configure a video input object to log data
to a disk file:

1 Create a MATLAB AVI file object — Create the MATLAB AVI file that
you want to use for data logging, using the avifile function. You specify
the name of the AVI file when you create it.

my_log = 'my_datalog.avi';
aviobj = avifile(my_log);

aviobj

Adjustable parameters:

Fps: 15.0000
Compression: 'Indeo3'’
Quality: 75

KeyFramePerSec: 2.1429
VideoName: 'my_datalog.avi'

Automatically updated parameters:
Filename: 'my_datalog.avi'
TotalFrames: 0O

width: O
Height: 0
Length: 0O

ImageType: 'Unknown'
CurrentState: 'Open'

2 Configure properties of the AVI file object — You can optionally
configure the properties of the AVI file object. The AVI file object supports
properties that control the data compression used, image quality, and
other characteristics of the file. The example sets the quality property
to a midlevel value. By lowering the quality, the AVI file object creates
smaller log files.

aviobj.Quality = 50;

5-51

5 Acquiring Image Data

5-52

Because this example acquires image data in grayscale format (RS170),
you must also specify the colormap used with the AVI object to ensure that
the stored data displays correctly.

aviobj.Colormap = gray(256);

Create a video input object — This example creates a video input object
for a Matrox image acquisition device, using the default video format
M_RS170. To run this example on your system, use the imaghwinfo
function to get the video input object constructor for your image acquisition
device and substitute that syntax for the following code.

vid = videoinput('matrox',1);

Configure video input object properties — Set up disk logging by
setting the value of the DiskLogger property to be aviobj, the AVI file
object created in step 1. Then, set the LoggingMode property to 'disk' (or
'disk&memory'). This example also sets the TriggerRepeat property.

vid.LoggingMode = 'disk&memory';

vid.DiskLogger = aviobj;
vid.TriggerRepeat = 3;

Start the video input object — Start logging data to disk.

start(vid)

The object executes an immediate trigger, acquires frames of data, repeats
the trigger three additional times, and then stops.

To verify that all the frames have been logged to the AVI file, check the
value of the DiskLoggerFrameCount property. This property tells the
number of frames that have been logged to disk.

vid.DiskLoggerFrameCount
ans =

40

Logging Image Data to Disk

Note Because it takes longer to write frames to a disk file than to memory,
the value of the DiskLoggerFrameCount property can lag behind the value
of the FramesAvailable property, which specifies the number of frames
logged to memory.

To verify that a disk file was created, go to the directory in which the log
file resides and make sure it exists. The exist function returns 2 if the
file exists.

if(exist(my_log)==2)
disp('AVI file created.')
end

6 Close the AVI file object — Close the AVI file to make it available
outside the MATLAB environment. Closing the AVI file object ensures that
the logged data is written to the disk file. Be sure to use the value of the
video input object DiskLogger property, vid.DiskLogger, to reference the
AVI file object, not the original variable, aviobj, returned by the avifile
function.

aviobj = close(vid.DiskLogger);

Use the original variable, aviobj, as the return value when closing an
AVTI file object.

7 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-53

5 Acquiring Image Data

5-54

Working with Acquired
Image Data

When you trigger an acquisition, the toolbox stores the image data in a
memory buffer, a disk file, or both. To work with this data, you must bring it
into the MATLAB workspace.

This chapter describes how you use video input object properties and toolbox
functions to bring the logged data into the MATLAB workspace.

* “Image Acquisition Overview” on page 6-2

* “Bringing Image Data into the MATLAB Workspace” on page 6-3

e “Working with Image Data in the MATLAB Workspace” on page 6-12

® “Retrieving Timing Information” on page 6-20

6 Working with Acquired Image Data

Image Acquisition Overview

When a trigger occurs, the toolbox acquires frames from the video stream and
logs the frames to a buffer in memory, a disk file, or both, depending on the
value of the LoggingMode property. To work with this logged image data, you
must bring it into the MATLAB workspace.

The following figure illustrates a group of frames being acquired from the
video stream, logged to memory and disk, and brought into the MATLAB
workspace as a multidimensional numeric array. Note that when frames are
brought into the MATLAB workspace, they are removed from the memory
buffer.

Start object: Trigger acurs;
viden stream data logaing Acquiition
begins. begins. staps.

h Y
Flo|F|F |F (F5 [F& [F7 [FE |F§ [FIO|FIT A2 (F3[F4([F3 WWS"W""---)

Toolbox lags image
frames fo memary

and/or disk file.

- Ik tike
Fe|F9 [F10 Fé | F7 [FR |FD [F10

L J

|

Memary buffer

Move image frames
infa the MAT LAB
workspace.

¥
MATLAE array [F6 | FF [FE |FD [FI0

Overview of Image Acquisition

Bringing Image Data into the MATLAB® Workspace

Bringing Image Data into the MATLAB Workspace

In this section...

“Overview” on page 6-3
“Moving Multiple Frames into the Workspace” on page 6-4
“Viewing Frames in the Memory Buffer” on page 6-6

“Bringing a Single Frame into the Workspace” on page 6-10

Overview

The toolbox provides three ways to move frames from the memory buffer
into the MATLAB workspace:

* Removing multiple frames from the buffer — To move a specified
number of frames from the memory buffer into the workspace, use the
getdata function. The getdata function removes the frames from the
memory buffer as it moves them into the workspace. The function blocks
the MATLAB command line until all the requested frames are available, or
until a timeout value expires. For more information, see “Moving Multiple
Frames into the Workspace” on page 6-4.

® Viewing the most recently acquired frames in the buffer — To bring
the most recently acquired frames in the memory buffer into the workspace
without removing them from the buffer, use the peekdata function. When
returning frames, peekdata starts with the most recently acquired frame
and works backward in the memory buffer. In contrast, getdata starts
at the beginning of the buffer, returning the oldest acquired frame first.
peekdata does not block the command line and is not guaranteed to return
all the frames you request. For more information, see “Viewing Frames
in the Memory Buffer” on page 6-6.

¢ Bringing a single frame of data into the workspace — As a
convenience, the toolbox provides the getsnapshot function, which
returns a single frame of data into the MATLAB workspace. Because the
getsnapshot function does not require starting the object or triggering an
acquisition, it is the easiest way to bring image data into the workspace.
getsnapshot is independent of the memory buffer; it can return a
frame even if the memory buffer is empty, and the frame returned

6-3

6 Working with Acquired Image Data

6-4

does not affect the value of the FramesAvailable property. For more
information, see “Bringing a Single Frame into the Workspace” on page
6-10. For an example of using getsnapshot, see the Image Acquisition
Toolbox demo Acquiring a Single Image in a Loop, or open the file
demoimaq_GetSnapshot.m in the MATLAB Editor.

Moving Multiple Frames into the Workspace

To move multiple frames of data from the memory buffer into the MATLAB
workspace, use the getdata function. By default, getdata retrieves the
number of frames specified in the FramesPerTrigger property but you can
specify any number. See the getdata reference page for complete information
about this function.

Note When the getdata function moves frames from the memory buffer into
the workspace, it removes the frames from the memory buffer.

In this figure, getdata is called at T, with a request for 15 frames but only
six frames are available in the memory buffer. getdata blocks until the
specified number of frames becomes available, at T,, at which point getdata
moves the frames into the MATLAB workspace and returns control to the
command prompt.

Bringing Image Data into the MATLAB® Workspace

Ta:

o T
Lagging begins. gefdatalvid, 15) gefdata returms.
Time O— gefdato blacks ————— - 1

(ontents of F
nemory buffer [F1 |F2_|F2 |F3 [F5 [F6
at Ty
(anfents of ¥
remary buffer| F1_[FL [F3_[F& |F5 [F6 [F7_[FA 9 [FI0 [FIT |F2[F13 [F14 [F3
atTg

= Frame returned by getdata

getdata Blocks Until Frames Become Available

Example: Acquiring 10 Seconds of Image Data

This example shows how you can configure an approximate time-based
acquisition using the FramesPerTrigger property:

1 Create an image acquisition object — This example creates a video
input object for a Windows image acquisition device. To run this example
on your system, use the imaghwinfo function to get the object constructor
for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('winvideo',1);

2 Configure properties — To acquire 10 seconds of data, determine the
frame rate of your image acquisition device and then multiply the frame
rate by the number of seconds of data you want to acquire. The product of
this multiplication is the value of the FramesPerTrigger property.

For this example, assume a frame rate of 30 frames per second (fps).
Multiplying 30 by 10, you need to set the FramesPerTrigger property to
the value 300.

6-5

6 Working with Acquired Image Data

set(vid, 'FramesPerTrigger',300)

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of
data. The start function returns control to the command line immediately
but the object continues logging the data to the memory buffer. After
logging the specified number of frames, the object stops running.

4 Bring the acquired data into the workspace — To verify that you
acquired the amount of data you wanted, use the optional getdata syntax
that returns the timestamp of every frame acquired. The difference
between the first timestamp and the last timestamp should approximate
the amount of data you expected.

[data time] = getdata(vid,300);
elapsed_time = time(300) - time(1)
10.0467

5 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Viewing Frames in the Memory Buffer

To view sample frames from the memory buffer without removing them, use
the peekdata function.

The peekdata function always returns the most recently acquired frames
in the memory buffer. For example, if you request three frames, peekdata
returns the most recently acquired frame in the buffer at the time of the
request and the two frames that immediately precede it.

The following figure illustrates this process. The command peekdata(vid,3)
is called at three different times (T,, T,, and T,). The shaded frames indicate

6-6

Bringing Image Data into the MATLAB® Workspace

the frames returned by peekdata at each call. (peekdata returns frames
without removing them from the memory buffer.)

Note in the figure that, at T, only two frames have become available since
the last call to peekdata. In this case, peekdata returns only the two frames,
with a warning that it returned less data than was requested.

T: Ty Ta: Tq:
Lagging begins. pezkdotalvid, 1) peekdatalvid 3) peekdatalvid 3)
! L .
(ontents of b
memary buffer F1 [F2 |F3 [F4 |F5 |Fd
UTTI
f ¥
ntentsat — FETTEr TF3 (74 (5 [F6 [F7 |F8 [F9 [FI0
memary huffer
I:IfTE
(antents of r
memary buffer F1 |F2 |F3 |F4 |F5 |F& |F7 |FR [F9 ([F10 [F1T [F12
at T \
peekdata does nat return F10
= Frame retumed by peekdata because it was already

returned ot To.

Frames Returned by peekdata
The following example illustrates how to use peekdata:

1 Create an image acquisition object — This example creates a video
input object for a Data Translation image acquisition device. To run this
example on your system, use the imaghwinfo function to get the object
constructor for your image acquisition device and substitute that syntax
for the following code.

vid = videoinput('dt',1);

2 Configure properties — For this example, configure a manual trigger.
You must use the triggerconfig function to specify the trigger type.

6-7

6 Working with Acquired Image Data

6-8

triggerconfig(vid, 'manual')

In addition, configure a large enough acquisition to allow several calls to
peekdata before it finishes.

set(vid, 'FramesPerTrigger',300);

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)
The video object is now running but not logging.
isrunning(vid)

ans =

islogging(vid)
ans =
0

4 Use peekdata to view frames before a trigger — If you call peekdata
before you trigger the acquisition, peekdata can only return a single frame
of data because data logging has not been initiated and the memory buffer
is empty. If more than one frame is requested, peekdata issues a warning
that it is returning fewer than the requested number of frames.

pdata = peekdata(vid,50);
Warning: PEEKDATA could not return all the frames requested.

Verify that peekdata returned a single frame. A single frame of data
should have the same width and height as specified by the ROIPosition
property and the same number of bands, as specified by the NumberOfBands
property. In this example, the video format of the data is RGB so the value
of the Number0OfBands property is 3.

whos

Bringing Image Data into the MATLAB® Workspace

Name Size Bytes Class
pdata 96x128x3 36864 uint8 array
vid 1x1 1060 videoinput object

Verify that the object has not acquired any frames.

get(vid, 'FramesAcquired')
ans =
0

5 Trigger the acquisition — Call the trigger function to trigger an
acquisition.

trigger(vid)
The object begins logging frames to the memory buffer.

6 View the most recently acquired frames — While the acquisition is
in progress, call peekdata several times to view the latest frames in the
memory buffer. Depending on the number of frames you request, and the
timing of these requests, peekdata might return fewer than the number
of frames you specify.

pdata = peekdata(vid,50);

To verify that peekdata returned the frames you requested, check the
dimensions of pdata. peekdata returns a four-dimensional array of frames,
where the last dimension indicates the number of frames returned.

whos
Name Size Bytes Class
pdata 4-D 1843200 uint8 array
vid 1x1 1060 videoinput object
size(pdata)
ans =
96 128 3 50

6-9

6 Working with Acquired Image Data

7 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Bringing a Single Frame into the Workspace

To bring a single frame of image data into the MATLAB workspace, use the
getsnapshot function. You can call the getsnapshot function at any time
after object creation.

This example illustrates how simple it is to use the getsnapshot function.

1 Create an image acquisition object — This example creates a video
input object for a Matrox device. To run this example on your system,
use the imaghwinfo function to get the object constructor for your image
acquisition device and substitute that syntax for the following code.

vid = videoinput('matrox',1);

2 Bring a frame into the workspace — Call the getsnapshot function to
bring a frame into the workspace. Note that you do not need to start the
video input object before calling the getsnapshot function.

frame = getsnapshot(vid);

The getsnapshot function returns an image of the same width and height
as specified by the ROIPosition property and the same number of bands as
specified by the Number0OfBands property. In this example, the video format
of the data is RGB so the value of the NumberOfBands property is 3.

whos
Name Size Bytes Class
frame 96x128x3 36864 uint8 array
vid 1x1 1060 videoinput object

6-10

Bringing Image Data into the MATLAB® Workspace

Note that the frame returned by getsnapshot is not removed from the
memory buffer, if frames are stored there, and does not affect the value

of the FramesAvailable property.

3 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

For an example of using getsnapshot, see the Image Acquisition

Toolbox demo Acquiring a Single Image in a Loop, or open the file
demoimaq_GetSnapshot.m in the MATLAB Editor.

6-11

6 Working with Acquired Image Data

6-12

Working with Image Data in the MATLAB Workspace

In this section...

“Understanding Image Data” on page 6-12

“Determining the Dimensions of Image Data” on page 6-13
“Determining the Data Type of Image Frames” on page 6-16
“Specifying the Color Space” on page 6-17

“Viewing Acquired Data” on page 6-19

Understanding Image Data

The illustrations in this documentation show the video stream and the
contents of the memory buffer as a sequence of individual frames. In reality,
each frame is a multidimensional array. The following figure illustrates the
format of an individual frame.

Bk (F} |F4 [FS [Fé | FF [FB | FO [FI0|F11(F2|F13|F4[F5

Memary buffer 7 ‘ .,
e
4 S
4 “
4 ~
rd L
'

s | wm PBand3

T | __-_ Band 2

- Band 1

Format of an Individual Frame
The following sections describes how the toolbox

® Determines the dimensions of the data returned

® Determines the data type used for the data

Working with Image Data in the MATLAB® Workspace

® Determines the color space of the data

This section also describes several ways to view acquired image data.

Determining the Dimensions of Image Data

The video format used by the image acquisition device is the primary
determinant of the width, height, and the number of bands in each image
frame. Image acquisition devices typically support multiple video formats.
You select the video format when you create the video input object (described
in “Specifying the Video Format” on page 4-11). The video input object stores
the video format in the VideoFormat property.

Industry-standard video formats, such as RS170 or PAL, include specifications
of the image frame width and height, referred to as the image resolution.

For example, the RS170 standard defines the width and height of the image
frame as 640-by-480 pixels. Other devices, such as digital cameras, support
the definition of many different, nonstandard image resolutions. The video
input object stores the video resolution in the VideoResolution property.

Each image frame is three dimensional; however, the video format determines
the number of bands in the third dimension. For color video formats, such as
RGB, each image frame has three bands: one each for the red, green, and blue
data. Other video formats, such as the grayscale RS170 standard, have only a
single band. The video input object stores the size of the third dimension in
the Number0OfBands property.

Note Because devices typically express video resolution as width-by-height,
the toolbox uses this convention for the VideoResolution property. However,
when data is brought into the MATLAB workspace, the image frame
dimensions are listed in reverse order, height-by-width, because MATLAB
expresses matrix dimensions as row-by-column.

ROIs and Image Dimensions

When you specify a region-of-interest (ROI) in the image being captured,
the dimensions of the ROI determine the dimensions of the image frames
returned. The VideoResolution property specifies the dimensions of the

6-13

6 Working with Acquired Image Data

image data being provided by the device; the ROIPosition property specifies
the dimensions of the image frames being logged. See the ROIPosition
property reference page for more information.

Example: Video Format and Image Dimensions

The following example illustrates how video format affects the size of the
image frames returned.

1 Select a video format — Use the imaghwinfo function to view the list of
video formats supported by your image acquisition device. This example
shows the video formats supported by a Matrox Orion frame grabber. The
formats are industry standard, such as RS170, NTSC, and PAL. These
standards define the image resolution.

info = imaghwinfo('matrox');
info.DevicelInfo.SupportedFormats

ans =
Columns 1 through 4

'M_RS170" 'M_RS170_VIA_RGB' 'M_CCIR' 'M_CCIR_VIA_RGB'
Columns 5 through 8
'M_NTSC' 'M_NTSC_RGB' 'M_NTSC_YC' 'M_PAL'
Columns 9 through 10
'M_PAL_RGB' 'M_PAL_YC'
2 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device using the default video
format, RS170. To run this example on your system, use the imaghwinfo

function to get the object constructor for your image acquisition device and
substitute that syntax for the following code.

vid = videoinput('matrox',1);

6-14

Working with Image Data in the MATLAB® Workspace

3 View the video format and video resolution properties — The toolbox
creates the object with the default video format. This format defines the
video resolution.

get(vid, 'VideoFormat')
ans =
M_RS170
get(vid, 'VideoResolution')
ans =
[640 480]

4 Bring a single frame into the workspace — Call the getsnapshot
function to bring a frame into the workspace.

frame = getsnapshot(vid);

The dimensions of the returned data reflect the image resolution and the
value of the NumberOfBands property.

vid.NumberOfBands
ans =

size(frame)
ans =
480 640

5 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames
of data.

6-15

6 Working with Acquired Image Data

6 Bring multiple frames into the workspace — Call the getdata
function to bring multiple image frames into the MATLAB workspace.

data = getdata(vid,10);

The getdata function brings 10 frames of data into the workspace.
Note that the returned data is a four-dimensional array: each frame is
three-dimensional and the nth frame is indicated by the fourth dimension.

size(data)
ans =

480 640 1 10

7 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Determining the Data Type of Image Frames

By default, the toolbox returns image frames in the data type used by the
image acquisition device. If there is no MATLAB data type that matches

the object’s native data type, getdata chooses a MATLAB data type that
preserves numerical accuracy. For example, in RGB 555 format, each color
component is expressed in 5-bits. getdata returns each color as a uint8 value.

You can specify the data type you want getdata to use for the returned
data. For example, you can specify that getdata return image frames as an
array of class double. To see a list of all the data types supported, see the
getdata reference page.

The following example illustrates the data type of returned image data.

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaghwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

6-16

Working with Image Data in the MATLAB® Workspace

vid = videoinput('matrox',1);

2 Bring a single frame into the workspace — Call the getsnapshot
function to bring a frame into the workspace.

frame = getsnapshot(vid);

3 View the class of the returned data — Use the class function to
determine the data type used for the returned image data.

class(frame)
ans =
uint8

4 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Specifying the Color Space

For most image acquisition devices, the video format of the video stream
determines the color space of the acquired image data, that is, the way color
information is represented numerically.

For example, many devices represent colors as RGB values. In this color
space, colors are represented as a combination of various intensities of red,
green, and blue. Another color space, widely used for digital video, is the
YCbCr color space. In this color space, luminance (brightness or intensity)
information is stored as a single component (Y). Chrominance (color)
information is stored as two color-difference components (Cb and Cr). Cb
represents the difference between the blue component and a reference value.
Cr represents the difference between the red component and a reference value.

The toolbox can return image data in grayscale, RGB, and YCbCr. To
specify the color representation of the image data, set the value of the
ReturnedColorSpace property. To display image frames using the image
or imagesc functions, the data must use the RGB color space. Another

6-17

6 Working with Acquired Image Data

MathWorks® product, the Image Processing Toolbox software, includes
functions that convert YCbCr data to RGB data, and vice versa.

Note Some devices that claim to support the YUV color space actually
support the YCbCr color space. YUV is similar to YCbCr but not identical.
The difference between YUV and YCbCr is the scaling factor applied to the
result. YUV refers to a particular scaling factor used in composite NTSC
and PAL formats. In most cases, you can specify the YCbCr color space for
devices that support YUV.

The following example illustrates how to specify the color space of the
returned image data.

1 Create an image acquisition object — This example creates a video
input object for a generic Windows image acquisition device. To run this
example on your system, use the imaghwinfo function to get the object
constructor for your image acquisition device and substitute that syntax
for the following code.

vid = videoinput('winvideo',1);

2 View the default color space used for the data — The value of the
ReturnedColorSpace property indicates the color space of the image data.

vid.ReturnedColorSpace
ans =
rgb

3 Modify the color space used for the data — To change the color space
of the returned image data, set the value of the ReturnedColorSpace

property.

set(vid, 'ReturnedColorSpace', 'grayscale')
ans =

grayscale

6-18

Working with Image Data in the MATLAB® Workspace

4 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Viewing Acquired Data

Once you bring the data into the MATLAB workspace, you can view it as you
would any other image in MATLAB.

The Image Acquisition Toolbox software includes a function, imagmontage,
that you can use to view all the frames of a multiframe image array in a
single MATLAB image object. imagmontage arranges the frames so that they
roughly form a square. imagmontage can be useful for visually comparing
multiple frames.

MATLAB includes two functions, image and imagesc, that display images in
a figure window. Both functions create a MATLAB image object to display the
frame. You can use image object properties to control aspects of the display.
The imagesc function automatically scales the input data.

The Image Processing Toolbox software includes an additional display routine
called imshow. Like image and imagesc, this function creates a MATLAB
image object. However, imshow also automatically sets various image object
properties to optimize the display.

6-19

6 Working with Acquired Image Data

6-20

Retrieving Timing Information

In this section...

“Introduction” on page 6-20
“Determining When a Trigger Executed” on page 6-20
“Determining When a Frame Was Acquired” on page 6-21

“Example: Determining the Frame Delay Duration” on page 6-22

Introduction

The following sections describe how the toolbox provides acquisition timing
information, particularly,

¢ Determining when a trigger executed

¢ Determining when a particular frame was acquired

To see an example of retrieving timing information, see “Example:
Determining the Frame Delay Duration” on page 6-22.

Determining When a Trigger Executed

To determine when a trigger executed, check the information returned by

a trigger event in the object’s event log. You can also get access to this
information in a callback function associated with a trigger event. For more
information, see “Retrieving Event Information” on page 7-7.

As a convenience, the toolbox returns the time of the first trigger execution
in the video input object’s InitialTriggerTime property. This figure
indicates which trigger is returned in this property when multiple triggers
are configured.

Retrieving Timing Information

Startoccurs; Manual Manual Manual
video stream frigger trigger frigger Aaqusition
starts. QCEurs QCCurs QCEurs stos.

L) ¥ r ¥ ¥
FoJF | F3 (R | FS (F6 | F7 [FR | F9 |FTO |[F17 |F12 (F13 |F14 [F15 'ﬁdeusfreum..>

InitialTrigge Mime

InitialTriggerTime Records First Trigger Execution

The trigger timing information is stored in MATLAB clock vector format. The
following example displays the time of the first trigger for the video input
object vid. The example uses the MATLAB datestr function to convert the
information into a form that is more convenient to view.

datestr(vid.InitialTriggerTime)
ans =
02-Mar-2007 13:00:24

Determining When a Frame Was Acquired

The toolbox provides two ways to determine when a particular frame was
acquired:

¢ By the absolute time of the acquisition

¢ By the elapsed time relative to the execution of the trigger

You can use the getdata function to retrieve both types of timing information.

Getting the Relative Acquisition Time

When you use the getdata function, you can optionally specify two return
values. One return value contains the image data; the other return value
contains a vector of timestamps that measure, in seconds, the time when the
frame was acquired relative to the first trigger.

[data time] = getdata(vid);

6-21

6 Working with Acquired Image Data

To see an example, see “Example: Determining the Frame Delay Duration”
on page 6-22.

Getting the Absolute Acquisition Time

When you use the getdata function, you can optionally specify three return
values. The first contains the image data, the second contains a vector of
relative acquisition times, and the third is an array of structures where each
structure contains metadata associated with a particular frame.

[data time meta] = getdata(vid);

Each structure in the array contains the following four fields. The AbsTime
field contains the absolute time the frame was acquired. You can also retrieve
this metadata by using event callbacks. See “Retrieving Event Information”
on page 7-7 for more information.

Frame Metadata

Field Name Description

AbsTime Absolute time the frame was acquired, returned in
MATLAB clock format
[year month day hour minute seconds]

FrameNumber Frame number relative to when the object was started

RelativeFrame | Frame number relative to trigger execution

TriggerIndex | Trigger the event is associated with. For example, when
the object starts, the associated trigger is 0. Upon stop, it
1s equivalent to the TriggersExecuted property.

Example: Determining the Frame Delay Duration

To illustrate, this example calculates the duration of the delay specified by
the TriggerFrameDelay property.

1 Create an image acquisition object — This example creates a video

input object for a Data Translation image acquisition device using the
default video format. To run this example on your system, use the

6-22

Retrieving Timing Information

imaghwinfo function to get the object constructor for your image acquisition
device and substitute that syntax for the following code.

vid = videoinput('dt',1);

Configure properties — For this example, configure a trigger frame
delay large enough to produce a noticeable duration.

set(vid, 'TriggerFrameDelay',50)

Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of
data. The start function returns control to the command line immediately
but data logging does not begin until the trigger frame delay expires. After
logging the specified number of frames, the object stops running.

Bring the acquired data into the workspace — Call the getdata
function to bring frames into the workspace. Specify a return value to
accept the timing information returned by getdata.

[data time] = getdata(vid);

The variable time is a vector that contains the time each frame was logged,
measured in seconds, relative to the execution of the first trigger. Check
the first value in the time vector. It should reflect the duration of the delay
before data logging started.

time
time =

.9987
.1587
.3188
.4465
.6065
. 7665
.8945

a oo oo

6-23

6 Working with Acquired Image Data

6.0544
6.2143
6.3424

5 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

6-24

7

Using Events and Callbacks

You can enhance the power and flexibility of your image acquisition
application by using event callbacks. An event is a specific occurrence that
can happen while an image acquisition object is running. The toolbox defines
a set of events that include starting, stopping, or acquiring frames of data.

When a particular event occurs, the toolbox can execute a function that you
specify. This is called a callback. Certain events can result in one or more
callbacks. You can use callbacks to perform processing tasks while your image
acquisition object continues running. For example, you can display a message,
analyze data, or perform other tasks. The start and stop callbacks, however,
execute synchronously; the object does not perform any further processing
until the callback function finishes.

Callbacks are controlled through video input object properties. Each event

type has an associated property. You specify the function that you want
executed as the value of the property.

e “Using the Default Callback Function” on page 7-2
¢ “Event Types” on page 7-4
¢ “Retrieving Event Information” on page 7-7

¢ “Creating and Executing Callback Functions” on page 7-12

7 Using Events and Callbacks

Using the Default Callback Function

To

illustrate how to use callbacks, this section presents a simple example that

creates an image acquisition object and associates a callback function with
the start event, trigger event, and stop event. For information about all the
event callbacks supported by the toolbox, see “Event Types” on page 7-4.

The example uses the default callback function provided with the toolbox,
imagcallback. The default callback function displays the name of the object
along with information about the type of event that occurred and when it
occurred. To learn how to create your own callback functions, see “Creating

an

d Executing Callback Functions” on page 7-12.

This example illustrates how to use the default callback function.

7-2

Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaghwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('matrox',1);

Configure properties — Set the values of three callback properties. The
example uses the default callback function imagcallback.

set(vid, 'StartFcn',@imaqcallback)
set(vid, 'TriggerFcn',@imaqcallback)
set(vid, 'StopFcn',@imaqcallback)

For this example, specify the amount of data to log.

set(vid, 'FramesPerTrigger',100);

Start the image acquisition object — Start the image acquisition object.
The object executes an immediate trigger, acquires 100 frames of data, and
then stops. With the three callback functions enabled, the object outputs
information about each event as it occurs.

start(vid)
Start event occurred at 14:38:46 for video input object: M_RS170-matrox-1.

Using the Default Callback Function

Trigger event occurred at 14:38:46 for video input object: M_RS170-matrox-1.
Stop event occurred at 14:38:49 for video input object: M_RS170-matrox-1.

4 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

7 Using Events and Callbacks

Event Types

The Image Acquisition Toolbox software supports several different types of
events. Each event type has an associated video input object property that
you can use to specify the function that executes when the event occurs.

This table lists the supported event types, the name of the video input object
property associated with the event, and a brief description of the event.

For detailed information about these callback properties, see the property
reference information in Chapter 15, “Properties — Alphabetical List”.

The toolbox generates a specific set of information for each event and stores
it in an event structure. To learn more about the contents of these event
structures and how to retrieve this information, see “Retrieving Event
Information” on page 7-7.

Note Callbacks, including ErrorFcn, are executed only when the video
object is in a running state. If you need to use the ErrorFcn callback for
error handling during previewing, you must start the video object before
previewing. To do that without logging data, use a manual trigger.

Events and Callback Function Properties

Event Callback Property Description

Error ErrorFcn The toolbox generates an error event when a
run-time error occurs, such as a hardware error
or timeout. Run-time errors do not include
configuration errors such as setting an invalid
property value.

When an error event occurs, the toolbox executes
the function specified by the ErrorFcn property.
By default, the toolbox executes the default
callback function for this event, imagcallback,

7-4

Event Types

Events and Callback Function Properties (Continued)

Event

Callback Property

Description

which displays the error message at the MATLAB
command line.

Frames
Acquired

FramesAcquiredFcn

The toolbox generates a frames acquired event when
a specified number of frames have been acquired.
You use the FramesAcquiredFcnCount property to
specify this number.

When a frames acquired event occurs, the
toolbox executes the function specified by the
FramesAcquiredFcn property.

Start

StartFcn

The toolbox generates a start event when an object
is started. You use the start function to start an
object.

When a start event occurs, the toolbox executes the
function specified by the StartFcn property.

Note The StartFcn callback executes
synchronously. If you specify a StartFcn callback
function, the toolbox waits for the function to finish
executing before performing any other processing.
If an error occurs in the start callback function, the
object never starts.

7-5

7 Using Events and Callbacks

Events and Callback Function Properties (Continued)

Event

Callback Property

Description

Stop

StopFcn

The toolbox generates a stop event when the object
stops running. An object stops running when the
stop function is called, the specified number of
frames is acquired, or a run-time error occurs.

When a stop event occurs, the toolbox executes the
function specified by the StopFcn property.

Note The StopFcn callback executes synchronously.
If you specify a StopFcn callback function, the
toolbox waits for the function to finish executing
before performing any other processing.

Timer

TimerFcn

The toolbox generates a timer event when a specified
amount of time expires. Time is measured relative
to when the object starts running. You use the
TimerPeriod property to specify the amount of time.

Note Some timer events might not execute if your
system is significantly slowed or if the TimerPeriod
is set too small.

When a timer event occurs, the toolbox executes the
function specified by the TimerFcn property.

Trigger

TriggerFcn

The toolbox generates a trigger event when a
trigger executes. The video input object executes
immediate triggers. You execute manual triggers by
calling the trigger function. The image acquisition
device executes hardware triggers when a specified
condition is met.

When a trigger event occurs, the toolbox executes
the function specified by the TriggerFcn property.

7-6

Retrieving Event Information

Retrieving Event Information

In this section...

“Introduction” on page 7-7
“Event Structures” on page 7-7

“Example: Accessing Data in the Event Log” on page 7-9

Introduction

Each event has associated with it a set of information, generated by the
toolbox and stored in an event structure. This information includes the event
type, the time the event occurred, and other event-specific information. While
a video input object is running, the toolbox records event information in the
object’s EventlLog property. You can also access the event structure associated
with an event in a callback function.

This section

¢ Defines the information in an event structure for all event types
¢ Describes how to retrieve information from the EventLog property

For information about accessing event information in a callback function, see
“Creating and Executing Callback Functions” on page 7-12.

Event Structures

An event structure contains two fields: Type and Data. For example, this is
an event structure for a trigger event:

Type: 'Trigger'
Data: [1x1 struct]

The Type field is a text string that specifies the event type. For a trigger
event, this field contains the text string 'Trigger'.

The Data field is a structure that contains information about the event.
The composition of this structure varies depending on which type of event

7-7

7 Using Events and Callbacks

7-8

occurred. For information about the information associated with specific
events, see the following sections:

e “Data Fields for Start, Stop, Frames Acquired, and Trigger Events” on
page 7-8

e “Data Fields for Error Events” on page 7-8

e “Data Fields for Timer Events” on page 7-9

Data Fields for Start, Stop, Frames Acquired, and Trigger
Events

For start, stop, frames acquired, and trigger events, the Data structure
contains these fields.

Field Name Description

AbsTime Absolute time the event occurred, returned
inMATLAB clock format

[year month day hour minute seconds]

FrameMemoryLimit | Amount of memory allotted for frame storage. You can
specify this value using the imagmem function.

FrameMemoryUsed | Amount of frame memory that is currently in use

FrameNumber Frame number relative to when the object was started
RelativeFrame Frame number relative to the execution of a trigger
TriggerIndex Trigger the event is associated with. For example,

upon start, the associated trigger is 0. Upon stop, it is
equivalent to the TriggersExecuted property.

Data Fields for Error Events
For error events, the Data structure contains these fields.

Retrieving Event Information

Field Name

Description

AbsTime Absolute time the event occurred, returned in
MATLAB clock format
[year month day hour minute seconds]
FrameMemoryLimit | Amount of memory allotted for frame storage. You can
specify this value using the imagmem function.
FrameMemoryUsed | Amount of frame memory that is currently in use
Message Text message associated with the error
MessageID MATLAB message identifier associated with the error

Data Fields for Timer Events
For timer events, the Data structure contains these fields.

Field Name

Description

AbsTime Absolute time the event occurred, returned in MATLAB
clock format
[year month day hour minute seconds]
FrameMemoryLimit| Amount of memory allotted for frame storage. You can
specify this value using the imagmem function.
FrameMemoryUsed | Amount of frame memory that is currently in use

Example: Accessing Data in the Event Log

While a video input object is running, the toolbox stores event information in
the object’s EventLog property. The value of this property is an array of event
structures. Each structure represents one event. For detailed information
about the composition of an event structure for each type of event, see “Event
Structures” on page 7-7.

7-9

7 Using Events and Callbacks

The toolbox adds event structures to the EventLog array in the order in which
the events occur. The first event structure reflects the first event recorded,
the second event structure reflects the second event recorded, and so on.

Note Only start, stop, error, and trigger events are recorded in the EventLog
property. Frames-acquired events and timer events are not included in the

Ev

entLog. Event structures for these events (and all the other events) are

available to callback functions. For more information, see “Creating and
Executing Callback Functions” on page 7-12.

To
an

illustrate the event log, this example creates a video input object, runs it,
d then examines the object’s EventLog property:

Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaghwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('matrox',1);

Start the image acquisition object — Start the image acquisition object.
By default, the object executes an immediate trigger, acquires 10 frames of
data, and then stops.

start(vid)

3 View the event log — Access the EventLog property of the video input

7-10

object. The execution of the video input object generated three events:
start, trigger, and stop. Thus the value of the EventLog property is a 1x3
array of event structures.

events = vid.EventlLog
events

1x3 struct array with fields:

Type
Data

Retrieving Event Information

To list the events that are recorded in the EventLog property, examine the
contents of the Type field.

{events.Type}
ans =
'Start’ 'Trigger' 'Stop’

To get information about a particular event, access the Data field in that
event structure. The example retrieves information about the trigger event.

trigdata = events(2).Data

trigdata

AbsTime: [2004 12 29 16 40 52.5990]
FrameMemoryLimit: 139427840
FrameMemoryUsed: 0
FrameNumber: 0O
RelativeFrame: 0O
TriggerIndex: 1

4 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

7-11

7 Using Events and Callbacks

7-12

Creating and Executing Callback Functions

In this section...

“Introduction” on page 7-12

“Creating Callback Functions” on page 7-12
“Specifying Callback Functions” on page 7-14
“Example: Viewing a Sample Frame” on page 7-16

“Example: Monitoring Memory Usage” on page 7-17

Introduction

The power of using event callbacks is the processing that you can perform in
response to events. You decide which events you want to associate callbacks
with and the functions these callbacks execute.

This section

® Describes how to create a callback function
® Describes how to specify the function as the value of a callback property
® Provides two examples of using event callbacks:

= Shows how to use callbacks to view a sample frame from the frames
being acquired

= Uses callback to implement a simple memory monitoring function

Note Callback function execution might be delayed if the callback involves
a CPU-intensive task such as updating a figure.

Creating Callback Functions

This section explains how to create callback functions for the TimerFcn,
FramesAcquiredFcn, StartFcn, StopFcn, TriggerFcn, and ErrorFcn
callbacks.

Creating and Executing Callback Functions

Callback functions require at least two input arguments:

®* The image acquisition object

e The event structure associated with the event

The function header for this callback function illustrates this basic syntax.

function mycallback(obj,event)

The first argument, obj, is the image acquisition object itself. Because the
object is available, you can use in your callback function any of the toolbox
functions, such as getdata, that require the object as an argument. You
can also access all object properties.

The second argument, event, is the event structure associated with the event.
This event information pertains only to the event that caused the callback
function to execute. For a complete list of supported event types and their
associated event structures, see “Event Structures” on page 7-7.

In addition to these two required input arguments, you can also specify
additional, application-specific arguments for your callback function.

Note To receive the object and event arguments, and any additional
arguments, you must use a cell array when specifying the name of the
function as the value of a callback property. For more information, see
“Specifying Callback Functions” on page 7-14.

Example: Writing a Callback Function

To illustrate, this example implements a callback function for a
frames-acquired event. This callback function enables you to monitor the
frames being acquired by viewing a sample frame periodically.

To implement this function, the callback function acquires a single frame
of data and displays the acquired frame in a MATLAB figure window. The
function also accesses the event structure passed as an argument to display
the timestamp of the frame being displayed. The drawnow command in the
callback function forces MATLAB to update the display.

7-13

7 Using Events and Callbacks

7-14

function display_frame(obj,event)

sample_frame = peekdata(obj,1);
imagesc(sample_frame);

drawnow; % force an update of the figure window
abstime = event.Data.AbsTime;

t = fix(abstime);

sprintf('%s %d:%d:%d', 'timestamp', t(4),t(5),t(6))

To see how this function can be used as a callback, see “Example: Viewing a
Sample Frame” on page 7-16.

Specifying Callback Functions

You associate a callback function with a specific event by setting the value
of the event’s callback property. The video input object supports callback
properties for all types of events.

You can specify the callback function as the value of the property in any of
three ways:

e Text string
e Cell array

e Function handle

The following sections provide more information about each of these options.

Note To access the object or event structure passed to the callback function,
you must specify the function as a cell array or as a function handle.

Creating and Executing Callback Functions

Using a Text String to Specify Callback Functions

You can specify the callback function as a string. For example, this code
specifies the callback function mycallback as the value of the start event
callback property StartFcn for the video input object vid.

vid.StartFcn = 'mycallback';

In this case, the callback is evaluated in the MATLAB workspace.

Using a Cell Array to Specify Callback Functions

You can specify the callback function as a text string inside a cell array.

For example, this code specifies the callback function mycallback as the value
of the start event callback property StartFcn for the video input object vid.

vid.StartFcn = {'mycallback'};

To specify additional parameters, include them as additional elements in
the cell array.

time = datestr(now,0);
vid.StartFcn = {'mycallback',time};

The first two arguments passed to the callback function are still the video
input object (0bj) and the event structure (event). Additional arguments
follow these two arguments.

Using Function Handles to Specify Callback Functions
You can specify the callback function as a function handle.

For example, this code specifies the callback function mycallback as the value
of the start event callback property StartFcn for the video input object vid.

vid.StartFcn = @mycallback;

To specify additional parameters, include the function handle and the
parameters as elements in the cell array.

time = datestr(now,0);
vid.StartFcn = {@mycallback,time};

7-15

7 Using Events and Callbacks

If you are executing a local callback function from within a MATLAB file, you
must specify the callback as a function handle.

Specifying a Toolbox Function as a Callback

In addition to specifying callback functions of your own creation, you can
also specify the start, stop, or trigger toolbox functions as callbacks.
For example, this code sets the value of the stop event callback to Image
Acquisition Toolbox start function.

vid.StopFcn = @start;

Disabling Callbacks

If an error occurs in the execution of the callback function, the toolbox disables
the callback and displays a message similar to the following.

start(vid)
??? Error using ==> frames_cb
Too many input arguments.

Warning: The FramesAcquiredFcn callback is being disabled.

To enable a callback that has been disabled, set the value of the property
associated with the callback or restart the object.

Example: Viewing a Sample Frame

This example creates a video input object and sets the frames acquired
event callback function property to the display_ frame function, created in
“Example: Writing a Callback Function” on page 7-13.

The example sets the TriggerRepeat property of the object to 4 so that 50
frames are acquired. When run, the example displays a sample frame from
the acquired data every time five frames have been acquired.

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaghwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

7-16

Creating and Executing Callback Functions

vid = videoinput('matrox', 1);

2 Configure property values — This example sets the FramesPerTrigger
value to 30 and the TriggerRepeat property to 4. The example also
specifies as the value of the FramesAcquiredFcn callback the event
callback function display_frame, created in “Example: Writing a Callback
Function” on page 7-13. The object will execute the FramesAcquiredFcn
every five frames, as specified by the value of the FramesAcquiredFcnCount

property.

set(vid, 'FramesPerTrigger', 30);

set(vid, 'TriggerRepeat', 4);

set(vid, 'FramesAcquiredFcnCount', 5);

set(vid, 'FramesAcquiredFcn', {'display_frame'});

3 Acquire data — Start the video input object. Every time five frames are
acquired, the object executes the display frame callback function. This
callback function displays the most recently acquired frame logged to the
memory buffer.

start(vid)

4 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Example: Monitoring Memory Usage

This example creates a callback function for a timer event that displays the
toolbox’s current memory usage and stops the acquisition when the available
memory for frame storage falls below a specified amount.

Creating the Memory Monitor Callback Function

This callback function implements a simple memory usage monitoring
function. The callback function uses the imagmem function to retrieve two
memory usage statistics, FrameMemoryLimit and FrameMemoryUsed, and then
calculates the amount of memory that is currently left for allocating frames.
When the amount of memory available falls below a specified value, the
function outputs a message and stops the object.

7-17

7 Using Events and Callbacks

function mem_mon(obj,event)
out = imagmem;
mem_left = out.FrameMemoryLimit - out.FrameMemoryUsed;

msg = 'Memory left for frames';
msg2 = 'Memory load';
low_limit = 2000000;

if(mem_left > low_limit)
sprintf('%s: %d \n%s: %d',msg, mem_left,msg2, out.MemorylLoad)
else
disp('Memory available for frames getting low.');
disp('Stopping acquisition.')
stop(obj);
end

Running the Example

The example acquires frames until the amount of memory left for frame
storage reaches a lower limit specified in the callback function.

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaghwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('matrox',1);

2 Configure property values — This example sets up a continuous
acquisition by setting the FramesPerTrigger value to Inf. The example
also specifies the timer event callback function mem_mon, created in
“Creating the Memory Monitor Callback Function” on page 7-17, as the
value of the TimerFcn callback. The object will execute the TimerFcn every
five seconds, as specified by the value of the TimerPeriod property.

set(vid, 'FramesPerTrigger',Inf);

set(vid, 'TimerPeriod',5);
set(vid, 'TimerFcn', {'mem_mon'});

7-18

Creating and Executing Callback Functions

3 Acquire data — Start the video input object. Every 5 seconds, the object
executes the callback function associated with the timer event. This
function outputs the current memory available for frame storage and the
memory load statistic. When the amount of memory reaches the specified
lower limit, the callback function stops the acquisition.

start(vid)

ans =
ans =

Memory
Memory

ans =

Memory
Memory

ans =

Memory
Memory

Memory
Memory

left

load:

left

load:

left

load:

left

load:

for
88

for
88

for
89

for
97

frames:

frames:

frames:

frames:

27791360

26316800

24842240

2969600

Memory available for frames getting low.
Stopping acquisition.

4 Clean up — Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

7-19

7 Using Events and Callbacks

7-20

Using the From Video
Device Block 1n Simulink

The Image Acquisition Toolbox software includes a block that can be used in
Simulink to bring live video data into models.

“Simulink Image Acquisition Overview” on page 8-2
“Opening the Block Library” on page 8-3

“Using Code Generation” on page 8-5

“Saving Video Data to a File” on page 8-6

8 Using the From Video Device Block in Simulink®

8-2

Simulink Image Acquisition Overview

This chapter describes how to use the Image Acquisition Toolbox block
library. The toolbox block library contains one block called the From Video
Device block. You can use this block to acquire live video data in a Simulink
model. You can connect this block with blocks in other Simulink libraries to
create sophisticated models.

Use of the Image Acquisition Toolbox From Video Device block requires
Simulink, a tool for simulating dynamic systems. If you are new to Simulink,
read the Getting Started section of the Simulink documentation to better
understand its functionality.

For full details about the block in the Image Acquisition Toolbox software, see
the reference page for the From Video Device block in From Video Device.

Opening the Block Library

Opening the Block Library

In this section...

“Using the imaqlib Command” on page 8-3

“Using the Simulink Library Browser” on page 8-3

Using the imaqlib Command
To open the Image Acquisition Toolbox block library, enter

imaqglib

at the MATLAB prompt. MATLAB displays the contents of the library in a
separate window.

[Z]Library: imaglib O] =|

File Edit Wiew Formab Help

Image Acquisition Toolbox

T

Image Acquisition

From ideo Dewice

Image Acquisition Toolbox™ Block Library

Using the Simulink Library Browser

To open the Image Acquisition Toolbox block library, start the Simulink
Library Browser and select the library from the list of available block libraries.

8-3

8 Using the From Video Device Block in Simulink®

To start the Simulink Library Browser, enter

simulink

at the MATLAB prompt. MATLAB opens the browser window. The left pane
contains a list of available block libraries in alphabetical order. To open the
Image Acquisition Toolbox block library, click its icon.

E! Simulink Library Browser -0 x|

File Edit ‘iew Help
JJ | = = HSearch:lEnter part of a block or libram namell ﬁ .:12\:

Libraries

E]--E Embedded IDE Link[Th) CC ;I From Yideo Device
E]--ﬂ Embedded IDE Link[Th] WS
E]--E Fuzzy Logic Toolbox

E]"E Fauges Blockset

= =1 Image Acouisition Toolbox
ﬂ Instrument Contral Toolbox
E Link for Cadence Incisive
E Link, for Discoweny

- Tl Link for ModelSim

E Model Predictive Control To...
E]--ﬂ Meural Metwork, Toolbox

- gl OPC Toolbox

E]"E Phwzical Modeling Develop. .

[=l =T =] P

[

Block Dezcription X

From ¥ideo Device: Acquire [ive image data from an image acguistion device.

Ready .

8-4

Using Code Generation

Using Code Generation

The From Video Device block supports the use of code generation. You can
generate code from the block. This enables models containing the From Video
Device block to run successfully in Accelerator, Rapid Accelerator, External,
and Deployed Modes.

A typical workflow is to develop a model using the From Video Device block
and blocks from the Computer Vision System Toolbox™. Then run the
simulation to verify that your device is working. Then build the model to
generate code and create the executable. The deployed application can then
be used on a machine that does not have MATLAB and Simulink.

The block supports use of the packNGo function from Simulink® Coder™.
Source-specific properties for your device are honored when code is generated.
The generated code compiles with both C and C++ compilers.

For more information, see “Code Generation” on page 16-3 on the block
reference page.

8 Using the From Video Device Block in Simulink®

8-6

Saving Video Data to a File

In this section...

“Introduction” on page 8-6

“Step 1: Open the Image Acquisition Toolbox Library” on page 8-6

“Step 2: Open a Model or Create a New Model” on page 8-7

“Step 3: Drag the From Video Device Block into the Model” on page 8-8
“Step 4: Drag Other Blocks to Complete the Model” on page 8-9

“Step 5: Connect the Blocks” on page 8-10

“Step 6: Specify From Video Device Block Parameter Values” on page 8-11

“Step 7: Run the Simulation” on page 8-13

Introduction

The best way to learn about the Image Acquisition Toolbox From Video Device
block is to see an example. This section provides a step-by-step example that
builds a simple model using the block in conjunction with blocks from other
blockset libraries.

Step 1: Open the Image Acquisition Toolbox Library

To use the From Video Device block, you must open the Image Acquisition
Toolbox block library. To open the library, start the Simulink Library Browser
and select the Image Acquisition Toolbox entry from the list.

To start the Simulink Library Browser, enter

simulink

at the MATLAB prompt. (For more information about opening the library, see
“Opening the Block Library” on page 8-3.)

Saving Video Data to a File

Step 2: Open a Model or Create a New Model

To use a block, you must add it to an existing model or create a new model.

To create a new model, select File > New > Model from the Simulink Library

Browser. Simulink opens an empty model window. To assign the new model a
name, use the Save option.

E Simulink Library Browser - 10| x|
File Edit “iew Help

Mew o [ibrary name - H ».3
ﬁ,’, Open Chrl+0 Library

Cl
o [TM] CC ‘I From Yideo Device
Preferences... [THM]YS
- .

™1 Ima on T ool
E [nztrument Contral Toolbos

8 Using the From Video Device Block in Simulink®

8-8

Step 3: Drag the From Video Device Block into the
Model

To use the From Video Device block in a model, click the block in the library
and, holding the mouse button down, drag it into the model window. Note
how the name on the block changes to reflect the device connected to your
system that is associated with the block.

E! Simulink Library Browser -0l x|

File Edit ‘“iew Help
JJ M = = “Search:IEnter part af a block or libram name:l M $

Librarie=

E]--E Ermbedded IDE Link(T] CC ﬂ Fram Yideo Device
E]--E Embedded IDE Link(TH] 5
E]--E Fuzzy Logic Toolbox

E]--E Fauges Blockset

E Image Acquisition Toolbox J
E Instrurnent Control Toolbox

- Tl Lirk for Cadence Incis [TJvideo_example_mod'el * B
E Lirk. for Discovery Fle Edit
- Tl Lirk for ModelSim

o Bl bt ed Doem ki oo ot] |ﬁ & §| 5 %ﬁ | 1 = {r |£j Q| p = I1D.D INDrmaI

Block Dezcription

Wiew Simulaktioy, Format Toaols Help

From Yideo Device: Acquie

\ v

Ready Creative Wieb. ..
1420 _G40:=480 Chp
inputi
Crf
From YWideo Dewvice
Ready 100, | |odess >

Drag From Video Device Block into Model Window

Saving Video Data to a File

Step 4: Drag Other Blocks to Complete the Model

To illustrate using the block, this example creates a simple model that
acquires data and then outputs the data to a file in Audio Video Interleave
(AVI) format. To create this model, the example uses a block from Computer
Vision System Toolbox.

Open the Computer Vision System Toolbox library. In the library window,
open the Sinks subsystem. From this subsystem, click the To Multimedia
File block in the library and, holding the mouse button down, drag the block
into the model window.

8-9

8 Using the From Video Device Block in Simulink®

E! Simulink Library Browser -0l =|

Fie Edt “iew Help
“ O = = ”Search:lEnter part af a black or lbram name;l h ‘«3

Libraries -

E Target Suppart Package TC2 ;l llﬂ-ﬁ" I Frame Fate Display
E Target Support Package TCE
I_'—_lﬂ Video and Image Processing...
- Analpzis & Enhancement m To Multimedia File
- Conversions
- Filtering
- Geametric Transformations E ToVidem[Dizplay
- Morphological Operations
- Sinkg (=[]
- Sources
- Statigtics
- Tent & Graphics | | = EH & | o B | = Nf} e | b = |1EI.EI INu:urmaI
- Tranzforms
... IHilitime
Block Dezcription
To Multimedia File: w/rite:
audio and video compressor: ¥ R \
file. If the specified output file Creative Web ..
14200420 Ch b & .
; output. avi
Ready inputt B
Crp
Audio
From Yideo Dewvice
To Multimedia File
Ready [100% |ode4s 2

Drag Output Block to Model Window

Step 5: Connect the Blocks

Connect the three outputs from the From Video Device block to the three
corresponding inputs on the To Multimedia File block. (You can leave the
Audio input on the To Multimedia File block unconnected.) One quick way to

8-10

Saving Video Data to a File

make all three connections at once is to select the From Video Device block,
press and hold the Ctrl key, and then click the To Multimedia File block.

Notice that the output ports on this particular camera device are Y, Cb,

Cr and the input ports on the To Multimedia File block are R, G, B. Some
devices designate color band by YCbCr and some devices designate it by RGB.
Both are valid and will work together.

E!viden_euample_mndel & - | Ellﬂ

File Edit W¥iew Simulation Format Tools Help

D|ﬁﬂ%|éﬁﬁ|ﬂ==§{r|ﬂﬁ 2 II1EI.EI INu:urmaI

f f——— R

Creative Web...

1920_ 640420 Chl——{ &

inputi output. awi
Cr——Jm»{H
Fram Wideo Device Audio
Tao Multimedia File
Ready [100% | | lode45 &

Connect the From Video Device Block to the To Multimedia File Block

Step 6: Specify From Video Device Block Parameter
Values

To check From Video Device block parameter settings, double-click the block’s
icon in the model window. This opens the Source Block Parameters dialog
box for the From Video Device block, shown in the following figure. Use the
various fields in the dialog box to determine the current values of From Video
Device block parameters or change the values.

8-11

8 Using the From Video Device Block in Simulink®

For example, using this dialog box, you can specify the device you want to use,
select the video format you want to use with the device, or specify the block
sample time. For more details, see the From Video Device block reference
page.

m Source Block Parameters: From Yideo Device x|

— From Yideo Device

Azquire live image data from an image acquisition device,

—Parameters
Device: winvideo 1 [Creative webCam Motebook Ultra [VPw]]
Viden format: | 14205400460 =]

Video zource: I inputl ;I Edit properties... |

ROl position [r, c. height, width]; I[EI 0 480 540]

Prewview. . |

Block zample time: I'I £30

Forts mode: I Separate color signalz ;I
[ata type: I zingle ;I
k. Cancel | Help |

You can set parameters for any of the blocks you include in your model. For
example, to specify the name of the AVI file, double-click the To Multimedia

File block. Make sure that you have write permission to the directory into
which the block writes the AVI file.

8-12

Saving Video Data to a File

Step 7: Run the Simulation

To run the simulation, click the Start simulation button on the model
window toolbar. You can use toolbar options to specify how long to run the
simulation and to stop a running simulation.

E!irideu_euample_mudel o - | Ellil

File Edit Wiew Simulakion Faormat Tools Help

D|E—”H§|Jﬁﬁ|¢==b‘[f|9@|_}J-|1un INDrmaI
by

Skart simulation

a1
(g —]

Cre ative WMieb. ..
120 _Ga0=420 Chi— &

inputi output. avi
Cr——={B

a
From Wideo Device Audia

Ta Multimedia File

Ready [100% | [T=0.00 |nde4s v

While the simulation is running, the status bar at the bottom of the model
window indicates the progress of the simulation. After the simulation

finishes, check the directory in which you ran the simulation to verify that an
AVI file was created.

8-13

8 Using the From Video Device Block in Simulink®

8-14

Configuring GigE Vision
Devices

* “Types of Setups” on page 9-2

e “Network Hardware Configuration Notes” on page 9-3

e “Installation of GigE Vision Cameras and Drivers” on page 9-4
e “Network Adaptor Configuration Notes” on page 9-6

e “Software Configuration” on page 9-12

® “Setting Preferences” on page 9-19

® “Troubleshooting” on page 9-21

9 Configuring GigE Vision Devices

9-2

Types of Setups

The Image Acquisition Toolbox software supports GigE Vision devices. The
following sections describe information on installing and configuring the
devices to work with the Image Acquisition Toolbox software. Separate
troubleshooting information is found in “Troubleshooting GigE Vision Devices
on Windows” on page 11-22.

Note Not all cameras that use Ethernet are GigE Vision. A camera must
have the GigE Vision logo appearing on it or its data sheet to be a GigE
Vision device.

There are five different setups you can use for GigE Vision cameras.

® Direct to a PC not on a network — PC is connected to camera with a Cat
5e or 6 Ethernet cable. PC is not on a network. This is one of the setups
that offers the best acquisition speed.

® Direct to a PC on a network, using two Ethernet cards — PC is connected
to camera with a Cat 5e or 6 Ethernet cable. PC is connected to a network.
This is one of the setups that offers the best acquisition speed.

® Indirect to a PC on a network, with PC and camera on same subnet — PC
1s connected to a network with a Cat 5e or 6 Ethernet cable. Camera is
connected to the same network with a Cat 5e or 6 Ethernet cable. You may
connect multiple cameras to the network using separate cables.

e Multiple cameras to a PC directly, using multiple Ethernet cards — PC is
connected to camera 1 with a Cat 5e or 6 Ethernet cable. PC is connected
to camera 2 with a separate Cat 5e or 6 Ethernet cable. PC is optionally
connected to a network. This is one of the setups that offers the best
acquisition speed.

e Multiple cameras to a PC directly, using switch or hub — PC is connected
to a switch or hub directly with a Cat 5e or 6 Ethernet cable. Camera 1 is
connected to switch/hub with a Cat 5e or 6 Ethernet cable. Camera 2 is
connected to the switch/hub with a separate Cat 5e or 6 Ethernet cable. PC
is optionally connected to a network. Alternatively, switch/hub is optionally
connected to a network.

Network Hardware Configuration Notes

Network Hardware Configuration Notes

The following notes apply to network connections and hardware.

Using the same network as the PC on a shared network connection — Plug
the camera into the network that the PC is plugged into. They must be on the
same subnet. A system administrator can configure a VLAN if necessary.

Using a private network connection — You can connect the camera through
the main/only Ethernet card, or through a second Ethernet card. In either
scenario, a switch can be used to connect multiple cameras.

Ethernet cards — Ethernet cards must be 1000 Mbps. If direct connection or
PC network allows, use a card that supports jumbo frames for larger packet
sizes. Also, on Windows, increase the number of receive buffers if reception
1s poor.

Switches for connecting multiple cameras — Use a switch that has full duplex

1000 Gbps per port capacity. It can be a managed switch, but does not have
to be.

9-3

9 Configuring GigE Vision Devices

9-4

Installation of GigE Vision Cameras and Drivers

Follow these steps to install a GigE Vision camera on a Windows machine.

It is not necessary to install your vendor software that came with your
device, but you may want to in order to verify that the device is running
outside of MATLAB.

Important Note: Do not install your vendor’s filtering or performance
networking driver.

2 Make sure you have installed GenICam™ 2.0.1. See “Software

Configuration” on page 9-12 for instructions.

In the Windows Network Connections dialog box (part of Control Panel), if
using a second network adaptor, you can optionally rename your second
network adaptor to “GigE Vision” to help distinguish it from your primary
adaptor.

If the Status column says “Limited or no connectivity,” that will not impact
your camera, as that status applies to the Internet.

4 Open the Properties dialog box of the Ethernet card by double-clicking

it in Network Connections. If you are using a separate Ethernet card
for the GigE camera, make sure that in the This connection uses the
following items section on the General tab you have nothing selected
except for Internet Protocol (TCP/IP). Be sure to use TCP/IP version
4, and not version 6.

Make sure that any vendor drivers are unchecked and that anti-virus
program drivers are unchecked. If you cannot uncheck the anti-virus
software from the adaptor due to organization restrictions, you may need
to purchase a second gigabit Ethernet card. In this case, leave all of the
options as is for the network card for your PC, and configure the second
card as described here, which will only connect to your camera.

In Windows Device Manager, make sure your network cards show up as
using the correct network card vendor driver.

Installation of GigE Vision Cameras and Drivers

For example, in the Device Manager window, under Network adapters,
you should see Intel PRO/1000 PT Desktop Adapter if you use that
particular Ethernet card.

Check your adaptor properties. If your situation allows, as described in the
next section, make sure that Jumbo Frames is enabled in the Settings
on the Advanced tab. Make sure that Receive Descriptors is enabled
in the Settings > Performance Options on the Advanced tab. Make
sure that the correct adaptor is listed in the Driver tab and that it has
not been replaced with a vendor-specific driver instead of the driver of

the Ethernet card.

9 Configuring GigE Vision Devices

9-6

Network Adaptor Configuration Notes

In this section...

“Windows” on page 9-6
“Linux” on page 9-6

“Mac” on page 9-7

Windows

Important Note: When you install your vendor software that came with your
device, do not install your vendor’s filtering or performance networking driver.

Let Windows automatically determine the IP if you are using a single direct
connection to the PC, instead of attempting to use static IP. Otherwise, leave
organizational IP configuration settings in place.

Use your vendor software to configure the camera for DHCP/LLA.

If you have multiple cameras connected to multiple Ethernet cards, you
cannot have them all set to automatic IP configuration. You must specify the
IP address for each card and each card must be on a different subnet.

Enable large frame support if your Ethernet card, and switch if present,
supports it and you are using a direct connection. If you are not using a direct
connection, you can enable large frame support if all switches and routers in
your organization’s network support it.

Set the Receive Buffers high, 2048 for example.

Linux

You will not need any drivers from your vendor and we recommend that you
do not install any that may have come with your device.

We recommend that you have your system administrator help with the
following setup tasks:

® Getting the Ethernet card recognized by the kernel.

Network Adaptor Configuration Notes

® Getting the IP and MTU configuration set up for direct connection.

For dynamic IP configuration of a camera and Ethernet card not connected
to an organizational network, avahi-autoipd can be used. However, we
recommend that each direct connection to a camera have an interface with
a static IP such as 10.10.x.y or 192.168.x.y.

If you want to use jumbo frames and your Ethernet card and switches Gf
present) allow, configure the MTU accordingly.

Mac

You will not need any drivers from your vendor and we recommend that you
do not install any that may have come with your device.

You should configure your Ethernet connection as shown:

9-7

9 Configuring GigE Vision Devices

9-8

Connected

AirPort
® o

@ FireWire
Mot Connected

In the configuration shown here, the Mac Pro has two Ethernet connections,
one to an internal network, and one for GigE Vision. The GigE Vision
connection is set to use DHCP.

Advanced settings are set as shown in the following diagrams.

Network Adaptor Configuration Notes

The TCP/IP tab.

9 Configuring GigE Vision Devices

The DNS tab.

9-10

Network Adaptor Configuration Notes

The Ethernet tab.

D:

If you are using a MacBook, you may not have the option of Jumbo frames
in the MTU.

9-11

9 Configuring GigE Vision Devices

9-12

Software Configuration

You need to install GenICam™ 2.2.0 from the MATLAB installation. Do not
use a later version — it must be version 2.2.0. Follow these steps.

Installing GenICam™ on Windows
Note that the installation process requires administrator privileges.

1 To install GenICam™, start MATLAB.
2 From within MATLAB, issue the following commands:

cd([matlabroot '\toolbox\imaqg\imaqgextern']);
installgenicam;

3 Restart MATLAB.

This will install the GenICam software to the default directory, C: \Program
Files\GenICam_v2_ 2. If you would like to specify a different directory, you
can pass it as an argument to the installgenicam function. For example:

installgenicam('C:\genicam');

4 On Windows, the environment variables should automatically be set
as part of the installation. You can optionally check to ensure that the
following environment variables point to the location where you installed
GenlCam. See the examples below.

Note If you have a camera that requires a GenlCam XML file on a local
drive (most cameras do not), you should set MWIMAQ_GENICAM_XML_FILES
environment variable to the directory of your choice, and then install the
camera’s XML file in that directory. However, most cameras do not require
or use local XML files.

Windows Examples

GENICAM_CACHE_V2_2=C:\WINNT\Profiles\All Users\Application
Data\GenICam\xml\cache

Software Configuration

GENICAM_LOG_CONFIG_V2_2=C:\Program
Files\GenICam_v2_2\log\config\DebuglLogging.properties

GENICAM_ROOT_V2_2=C:\Program Files\GenICam_v2_2
PATH must contain:

C:\Program Files\GenICam_v2_2\bin\Win32_i86 or C:\Program
Files\GenICam_v2 2\bin\Win64_ x64 (depending on your architecture)

Ensure that the cache directory in your GENICAM_CACHE_V2_2 environment
variable exists for GenICam to be able to use it.

You can test the installation by using the following command:
imaghwinfo('gige"')

and by looking at the relevant sections of the output when you run the
imagsupport function.

Installing GenICam™ on Linux

There is no automated installer for GenICam on Linux®, but the files that
need to be installed have been provided.

1 The files are located in:

<matlabroot>/toolbox/imaq/imaqgextern/drivers/<ARCH>/genicam

These are tar files and you should extract them into a location of your
choice.

2 After the files are extracted, configure environment variables.

On Linux you need to set the environment variables manually. See the
examples below.

Also, you can configure them in your login files or on a system-wide basis
so they persist.

9-13

9 Configuring GigE Vision Devices

9-14

Note If you have a camera that requires a GenICam XML file on a local
drive (most do not), you should set MNIMAQ_GENICAM_XML_FILES environment
variable to the directory of your choice, and then install the camera’s XML
file in that directory.

Linux Examples
GENICAM_ROOT_V2_2=/opt/GenICam_2_2_0
GENICAM_CACHE_V2_2=~/.GenICam/xml/cache
GENICAM_LOG_CONFIG_V2_2=/opt/GenICam_2_2_0/log/config-unix/DebuglLogging.properties
Note that you may need to create the .GenICam/xml/cache directory in your
home directory. Also, this example assumes that you have un-tarred the files
in the /opt/GenICam_2 2 0 directory.

LD_LIBRARY_PATH must contain:

/opt/GenICam_2_ 2 0/bin/Linux32_i86 or
/opt/GenICam_2 2 0/bin/Linux64 x64 (depending on your architecture)

Ensure that the cache directory in your GENICAM_CACHE_V2_2 environment
variable exists for GenICam to be able to use it.

You can test the installation by using the following command:
imaghwinfo('gige"')

and by looking at the relevant sections of the output when you run the
imagsupport function.

Installing GenICam™ on Mac® OS X

There is no automated installer for GenICam on Mac OS X, but the files that
need to be installed have been provided. They are located in:

<matlabroot>/toolbox/imaq/imagextern/drivers/maci64/genicam/
GenICam_Runtime_gcc42_Maci64_x64_v2_2_ 0.tgz

Software Configuration

This is a compressed tar file and you should extract it into:

/Applications/GenICam/V2_2_0

Date Modsfied : i
Agr &, 2011 7-39 AM - Folder

Yesterday, 3:30 PM 36 ME qgzipc.rohive
1 License_ReadMe. Apr &, 2011 706 AM 4B Plain Text
2 licenses Agr B, 2011 7:39 AM == Folder
tog Agr &, 2011 7:39 AM -- Folder
xml Apr 8, 2011 7:39 AM

After the files are extracted, configure environment variables. You can do this
by creating and opening ~/.Mac0SX/environment.plist as shown here:

9-15

9 Configuring GigE Vision Devices

mijones@miones~mact: home/mjones
[mignesdmiones-maci~] ...
X touch MocDSX/environment .plist
[mionesdmiones—moci =] ...
X open HocOSH/environment.plist
[mippesdnjones-mci=~] ...
x

ANa

) S—
Add Child ' Delete ltem

toshi== 8024

| environment.plist

Key Ty pe
i Root Dictionary § '
GENICAM _CACHE W2 _2 String fhamefmiones/.CenlCam/ xmli/cache i
GENICAM_LOG_CONFIG_VZ_2 String iapplications /CeniCam/v2_2_0/log/config-unix/Defaultl
1
GENICAM_ROOT V2_2 String JApplications JGenlCam/V2_2 0

R T L

Alternatively,

you can do this by using a utility such as the one here:

http://www.apple.com/downloads/macosx/system_disk_utilities/
environmentvariablepreferencepane.html

9-16

Software Configuration

Set environment variables, as shown here.

Environment Variables

Edit the list of global environment variables that will be set by the login window.
The list is saved in your ~/.MacO5SX/environment.plist file. Changes take effect the next time you log in.

“Mame

_ CENICAM_CACHE _V2_2 fhome/mjones/.CenlCam /xml/cache

GEMICAM LOG CONFIG V2 2 fApplications{GenlCam/V2 2 O/log/config-unix/Defaultl oggin. .
GENICAM_ROOT v2_2 Mpplicitiuns!GenICam.-‘vE_Z_O

| Value !

Revert Save
{ €)

Note If you have a camera that requires a GenICam XML file on a local drive
(most cameras do not), you should also set the MWIMAQ_GENICAM_XML_FILES

environment variable to the directory of your choice, and then install the
camera’s XML file in that directory.

Mac Examples
GENICAM_ROOT_V2_2=/Applications/GenICam
GENICAM_CACHE_V2_2=/home/<USERNAME>/.GenICam/xml/cache

GENICAM_LOG_CONFIG_V2_2=/Applications/GenICam/log/config-unix/DefaultlLogging.properties

9-17

9 Configuring GigE Vision Devices

9-18

Note that you may need to create the .GenICam/xml/cache directory in your
home directory. Also, this example assumes that you have un-tarred the files
in the /Applications/GenICam directory.

Ensure that the cache directory in your GENICAM_CACHE_V2_2 environment
variable exists for GenICam to be able to use it.

Note You will need to log out and log back in for the environment variable
changes to take effect.

You can test the installation by using the following command:
imaghwinfo('gige')

and by looking at the relevant sections of the output when you run the
imagsupport function.

Setting Preferences

Setting Preferences

_lolx

There are three GigE Vision related preferences in the Image Acquisition
Preferences accessible from the File > Preferences command in MATLAB.

B

£

B

-Command Window
-~ {Command History
|- Editor [Debugger

- Help

-Current Folder

----- Variable Editor

----- Workspace

~{aUIDE

----- Time Series Toals
H--Figure Copy Template
-~ {Compiler

--Feport Generator
-SystemTest

- Bioinformatics Tools
-Database Toolbox

B mage Acquisition
----- Image Processing
----- Instrument Control

- Gystem Objects

- Simulink

--Simscape

H--Simulink 30 Animation
-&imulink Control Design

- Signal Processing Blockse |
----- Video and Image Proces: =

;I Image Acqguisition Preferences

gige Adaptor
Timeout for packet acknowledgment: I 1,0003: milliseconds

Timeout for heartbeat: I I,DDDE milliseconds
Retries for commands: I 33:

oK I Cancel | Apply Help |

Timeout for packet acknowledgement — this is a timeout value for the
time between the sending of a command (for camera discovery or control) and
the time that the acknowledgement is received from the camera.

Timeout for heartbeat — the camera requires that the application send

a packet every so often (like a heartbeat) to keep the control connection
alive. This is the setting for that packet period. Setting it too low can add

9-19

9 Configuring GigE Vision Devices

9-20

unnecessary load to the computer and to the camera. Setting it too high
can cause the camera to remain in use too long beyond when the toolbox
attempts to relinquish control, leading to a failure to obtain control to start
another acquisition.

Retries for commands — this is the number of attempts that the toolbox
will make to send a command to the camera before deciding that the send
has failed. The time between retries is set by the Timeout for packet
acknowledgement setting.

Troubleshooting

Troubleshooting

For troubleshooting information for GigE Vision devices on Windows, see
“Troubleshooting GigE Vision Devices on Windows” on page 11-22.

For troubleshooting information for GigE Vision devices on Linux, see
“Troubleshooting GigE Vision Devices on Linux” on page 11-25.

For troubleshooting information for GigE Vision devices on Mac, see
“Troubleshooting GigE Vision Devices on Mac” on page 11-27.

9-21

9 Configuring GigE Vision Devices

9-22

Adding Support for
Additional Hardware

The Image Acquisition Toolbox software supports connections with hardware
from many common vendors, but it might not support the hardware you use.
To add support for your hardware, you can create an adaptor using the Image
Acquisition Toolbox Adaptor Kit.

1 0 Adding Support for Additional Hardware

10-2

Support for Additional Hardware

The Image Acquisition Toolbox Adaptor Kit is a C++ framework that you can
use to implement an adaptor. An adaptor is a dynamic link library (DLL) that
implements the connection between the Image Acquisition Toolbox engine
and a device driver via the vendor’s SDK API. When you use the Adaptor Kit
framework, you can take advantage of many prepackaged toolbox features
such as disk logging, multiple triggering modes, and a standardized interface
to the image acquisition device.

After you create your adaptor DLL and register it with the toolbox using the
imagregister function, you can create a video input object to connect with
a device through your adaptor. In this way, adaptors enable the dynamic
loading of support for hardware without requiring recompilation and linking
of the toolbox.

To build an adaptor requires familiarity with C++, knowledge of the
application programming interface (API) provided by the manufacturer of
your hardware, and familiarity with Image Acquisition Toolbox concepts,
functionality, and terminology. To learn more about creating an adaptor,
read the Image Acquisition Toolbox Adaptor Kit User’s Guide. For detailed
information about the adaptor kit framework classes, see the Image
Acquisition Toolbox Adaptor Kit Class Reference, which is available in

matlabroot\toolbox\imaqg\imaqgadaptors\kit\doc\adaptorkit.chm

where matlabroot represents your MATLAB installation directory.

http://www.mathworks.com/access/helpdesk/help/pdf_doc/imaq/adaptorkit.pdf

Troubleshooting

This chapter provides information about solving common problems you
might encounter with the Image Acquisition Toolbox software and the video
acquisition hardware it supports.

e “Troubleshooting Overview” on page 11-2

e “DALSA Coreco IFC Hardware” on page 11-3

¢ “DALSA Coreco Sapera Hardware” on page 11-5

e “Data Translation Hardware” on page 11-7

e “DCAM IEEE 1394 (FireWire) Hardware on Windows” on page 11-8
¢ “Hamamatsu Hardware” on page 11-15

e “Matrox Hardware” on page 11-16

¢ “QImaging Hardware” on page 11-18

¢ “National Instruments Hardware” on page 11-20

® “GigE Vision Hardware” on page 11-22

¢ “Windows Video Hardware” on page 11-30

¢ “Linux Video Hardware” on page 11-33

¢ “Linux DCAM IEEE 1394 Hardware” on page 11-35

e “Macintosh Video Hardware” on page 11-36

e “Macintosh DCAM IEEE 1394 Hardware” on page 11-37

* “Video Preview Window Troubleshooting” on page 11-38

¢ “Contacting MathWorks and Using the imagsupport Function” on page
11-39

11 1ou bleshooting

Troubleshooting Overview

11-2

If, after installing the Image Acquisition Toolbox software and using it to
establish a connection to your image acquisition device, you are unable to
acquire data or encounter other problems, try these troubleshooting steps
first. They might help fix the problem.

1 Verify that your image acquisition hardware is functioning properly.

2 If the hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the Image Acquisition
Toolbox software.

The following sections describe how to perform these steps for the vendors and
categories of devices supported by the Image Acquisition Toolbox software.

If you are encountering problems with the preview window, see “Video
Preview Window Troubleshooting” on page 11-38.

Note To see the full list of hardware that the toolbox supports, visit
the Image Acquisition Toolbox product page at the MathWorks Web site
www . mathworks.com/products/imaq.

http://www.mathworks.com/products/imaq

DALSA® Coreco IFC Hardware

DALSA Coreco IFC Hardware

In this section...

“Troubleshooting DALSA Coreco IFC Devices” on page 11-3

“Determining the Driver Version for DALSA Coreco IFC Devices” on page
11-4

Troubleshooting DALSA Coreco IFC Devices

The Image Acquisition Toolbox software supports the use of both DALSA®
Coreco IFC hardware and DALSA Coreco Sapera hardware. Please see the
appropriate section depending on which driver your hardware uses.

If you are having trouble using the Image Acquisition Toolbox software with a
supported DALSA Coreco IFC frame grabber, follow these troubleshooting
steps:

1 Verify that your image acquisition hardware is functioning properly.

For DALSA Coreco IFC devices, run the application that came with your
hardware, the IFC Camera Configurator, and verify that you can view a
live video stream from your camera.

2 Verify that the toolbox can locate your camera file, if you are using a camera
file to configure the device. Make sure that your camera file appears in the
List of Cameras in the DALSA Coreco IFC Camera Configurator.

3 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox. The Image
Acquisition Toolbox software is only compatible with specific driver
versions provided with the DALSA Coreco hardware and is not guaranteed
to work with any other versions.

¢ Find out the driver version you are using on your system. To learn how
to get this information, see “Determining the Driver Version for DALSA
Coreco IFC Devices” on page 11-4.

e Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of

11-3

11 1ou bleshooting

114

supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imag).

If you discover that you are using an unsupported driver version, visit the
DALSA Coreco Web site (www.imaging.com) to download the correct driver.

Determining the Driver Version for DALSA Coreco

IFC Devices

To determine the DALSA Coreco IFC Library version you are using, view the
release notes for the driver. You can access the release notes through the

Windows Start menu.

1 Click the Start button.

2 On the Start menu, select Programs.

3 From the Programs menu, select the IFC link.

4 On the IFC menu, select the IFC release notes.

http://www.mathworks.com/products/imaq
http://www.imaging.com

DALSA® Coreco Sapera Hardware

DALSA Coreco Sapera Hardware

In this section...

“Troubleshooting DALSA Coreco Sapera Devices” on page 11-5

“Determining the Driver Version for DALSA Coreco Sapera Devices” on
page 11-6

Troubleshooting DALSA Coreco Sapera Devices

The Image Acquisition Toolbox software supports the use of both DALSA
Coreco IFC hardware and DALSA Coreco Sapera hardware. Please see the
appropriate section depending on which driver your hardware uses.

If you are having trouble using the Image Acquisition Toolbox software with a
supported DALSA Coreco Sapera frame grabber, follow these troubleshooting
steps:

1 Verify that your image acquisition hardware is functioning properly.

For DALSA Coreco Sapera devices, run the application that came with
your hardware, the Sapera CamExpert, and verify that you can view a
live video stream from your camera.

2 If you are using a camera file to configure the device, verify that the toolbox
can locate your camera file. Make sure that your camera appears in the
Camera list in the Sapera CamExpert. To test the camera, select the
camera in the list and click the Grab button.

3 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox.

Note The Image Acquisition Toolbox software is compatible only with
specific driver versions provided with the DALSA Coreco hardware and is
not guaranteed to work with any other versions.

11-5

11 1ou bleshooting

11-6

® Find out the driver version you are using on your system. To learn how
to get this information, see “Determining the Driver Version for DALSA
Coreco Sapera Devices” on page 11-6.

® Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imag).

If you discover that you are using an unsupported driver version, visit the
DALSA Coreco Web site (www.imaging.com) to download the correct driver.

Determining the Driver Version for DALSA Coreco
Sapera Devices

To determine the DALSA Coreco Sapera Library version you are using, view
the release notes for the driver. You can access the release notes through the
Windows Start menu.

1 Click the Start button to open the Start menu.

2 Select Programs > DALSA Coreco Imaging > Sapera LT to open the
Sapera LT menu.

3 Select Readme to view the Sapera release notes.

http://www.mathworks.com/products/imaq
http://www.imaging.com

Data Translation® Hardware

Data Translation Hardware

If you are having trouble using the Image Acquisition Toolbox software with a
supported Data Translation frame grabber, follow these troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

For Data Translation devices, run the application that came with your
hardware and verify that you can receive live video.

2 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox. The Image
Acquisition Toolbox software is only compatible with specific driver
versions provided by Data Translation with the Imaging Omni CD and is
not guaranteed to work with any other versions.

* Find out the driver version you are using on your system.

¢ Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit
the Data Translation Web site (www.datatranslation.com) to download
the correct driver.

3 Install the Data Translation Software Development Kit (SDK).

If the imaghwinfo function does not return the driver for a Data Translation
frame grabber, or the imaghwinfo function or videoinput functions return
an error message about a missing DLL (01fg32.d11), you may need to
install additional files from the Imaging Omni CD.

By default, when you install drivers for your Data Translation frame
grabber, the installation program may not install all the files the device
drivers need. The additional files needed by the device driver are part of
the SDK installation, not the device driver installation. If you get error
messages about missing files, insert the Imaging Omni CD into your
CD-ROM drive and install the SDK.

11-7

http://www.mathworks.com/products/imaq
http://www.datatranslation.com

11 1ou bleshooting

DCAM IEEE 1394 (FireWire) Hardware on Windows

In this section...
“Troubleshooting DCAM IEEE 1394 Hardware on Windows” on page 11-8
“Installing the CMU DCAM Driver on Windows” on page 11-9

“Running the CMU Camera Demo Application on Windows” on page 11-11

Troubleshooting DCAM IEEE 1394 Hardware on
Windows

If you are having trouble using the Image Acquisition Toolbox software with
an IEEE 1394 (FireWire) camera, using the toolbox’s dcam adaptor, follow
these troubleshooting steps:

1 Verify that your IEEE 1394 (FireWire) camera is plugged into the IEEE
1394 (FireWire) port on your computer and is powered up.

2 Verify that your IEEE 1394 (FireWire) camera can be accessed through
the dcam adaptor.

e Make sure the camera is compliant with the IIDC 1394-based
Digital Camera (DCAM) specification. Vendors typically include this
information in documentation that comes with the camera. If your digital
camera is not DCAM compliant, you might be able to use the winvideo
adaptor. See “Windows Video Hardware” on page 11-30 for information.

e Make sure the camera outputs data in uncompressed format. Cameras
that output data in Digital Video (DV) format, such as digital camcorders,
cannot use the dcam adaptor. To access these devices, use the winvideo
adaptor. See “Windows Video Hardware” on page 11-30 for information.

® Make sure you specified the dcam adaptor when you created the video
input object. Some IEEE 1394 (FireWire) cameras can be accessed
through either the dcam or winvideo adaptors. If you can connect to
your camera from the toolbox but cannot access some camera features,
such as hardware triggering, you might be accessing the camera through
a DirectX® driver. See “Creating a Video Input Object” on page 4-9 for
more information about specifying adaptors.

11-8

DCAM IEEE® 1394 (FireWire) Hardware on Windows®

3 Verify that your IEEE 1394 (FireWire) camera is using the Carnegie
Mellon University (CMU) DCAM driver version 6.4.4.

Note The toolbox only supports connections to IEEE 1394 (FireWire)
DCAM-compliant devices using the CMU DCAM driver. The toolbox is
not compatible with any other vendor-supplied driver, even if the driver
1s DCAM compliant.

To verify this, run the demo application provided by CMU,
1394CameraDemo.exe. This demo application is among the files you install
from the CMU driver archive file when you install the CMU DCAM driver
— see “Installing the CMU DCAM Driver on Windows” on page 11-9. To
learn how to run the demo application, see “Running the CMU Camera
Demo Application on Windows” on page 11-11.

¢ [f the demo application recognizes the camera, the camera is set up to
use the CMU DCAM driver and is ready for use by the toolbox.

¢ [f the demo application does not recognize the camera, install the CMU
DCAM driver. See “Installing the CMU DCAM Driver on Windows” on
page 11-9 for instructions.

¢ [fthe demo application recognizes your camera, but the toolbox still does
not, verify that the camera complies with the correct DCAM specification
version for the camera and the correct DCAM CMU driver version
required by the toolbox. For the correct information about supported
hardware, visit the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imag).

Installing the CMU DCAM Driver on Windows

The Image Acquisition Toolbox software supports acquiring data from IEEE
1394 (FireWire) cameras that support the IIDC 1394-based Digital Camera
(DCAM) specification. To use a DCAM compliant camera, you must use
the DCAM driver created by Carnegie Mellon University (CMU) to connect
to these devices.

11-9

http://www.mathworks.com/products/imaq

11 1ou bleshooting

Note The CMU DCAM driver is the only DCAM driver supported by the
toolbox. You cannot use vendor-supplied drivers, even if they are compliant
with the DCAM specification.

Installing the Driver
To install the CMU DCAM driver on your system, follow this procedure:

1 Obtain the CMU DCAM driver files. The Image Acquisition Toolbox
software includes the CMU DCAM installation file, 1394camera644.exe,
in the directory

matlabroot\toolbox\imaqg\imagextern\drivers\win32\dcam

where matlabroot represents the name of your MATLAB installation
directory.

You can also download the DCAM driver directly from CMU. Go to the Web
site www.cs.cmu.edu/~iwan/1394 and click the download link.

2 Start the installation by double-clicking the .exe file.

On the first page of the installation wizard under Select components to
install, select the first three items in the installation list, and click Next.
On the second page of the wizard, accept the default location or browse to a
new one, and click Install.

Note To install the DCAM driver on a 32-bit Windows 7 system, you must
run the installation program as administrator. Open the folder containing the
installer EXE file. Right-click on it and choose Run as administrator. If you
do not do this, it will fail to install some of the necessary files.

You may need to get your camera recognized after installing the driver.

If this happens, open Device Manager and select the camera software.
Right-click it and choose Update Driver Software. Browse for the vendor
driver software and install it.

11-10

DCAM IEEE® 1394 (FireWire) Hardware on Windows®

Running the CMU Camera Demo Application on
Windows

The Carnegie Mellon University (CMU) DCAM driver distribution includes a
camera demo application, named 1394CameraDemo.exe. The demo application
is among the files you installed in the previous section.

You can use this demo application to verify whether your camera is using the
CMU DCAM driver. The following describes the step-by-step procedure you

must perform to access a camera through this demo application.

1 Select Start > Programs > CMU 1394 Camera > 1394 Camera Demo.

2 The application opens a window, shown in the following figure.

ﬁ: 13%4 Camera Denva =B =]
Carara floda Este Haip

REssy

3 From the Camera Demo application, select Camera > Check Link. This
option causes the demo application to look for DCAM-compatible cameras
that are available through the IEEE 1394 (FireWire) connection.

The demo application displays the results of this search in a pop-up

message box. In the following example, the demo application found a
camera. Click OK to continue.

11-11

11 1ou bleshooting

1394 Came ralemn = |

‘-:Er'J Checklink: Feurd | Camera

-

4 Select Camera > Select Camera and select the camera you want to use.
The Select Camera option is not enabled until after the Check Link
option has successfully found cameras.

5 Select Camera > Init Camera. In this step, the demo application checks
the values of various camera properties. The demo application might resize
itself to fit the video format of the specified camera. If you see the following
dialog box message, click Yes.

1 394 Cameralleno

I E REcat ko paerup defa ks

hizd [He]

Note If you are using 1394b, select Camera > 1394b Support,
and then check the Maximum Speed option after choosing
1394b support. If you do not see 400 MB per second or

higher, refer to the customer technical solution on that topic,
http://www.mathworks.com/support/solutions/data/1-SLNN8U.html.

6 Select Camera > Show Camera to start acquiring video.

11-12

http://www.mathworks.com/support/solutions/data/1-3LNN8U.html

DCAM IEEE® 1394 (FireWire) Hardware on Windows®

], | S N
. &0 1394 Camera Demo =k

Camers Mods Rste Halp aiks

heech Link,
Seleck Comera k :I

Tnik CamErs
13949b Supgot

Camera (ade|
Pl L S

Seream Cantral]
Shaw Camera

Exbzrnal Trigger
Cptional Features #

Exit

Show Camars Image with Method #1

11-13

11 1ou bleshooting

The demo application starts displaying live video in the window.

[& 1394 Camera Demo ===
Camara fiods Fate Haip

Displarving: 0.0 fips, 0. 1% dropped

7 To exit, select Stop Camera from the Camera menu and then click Exit.

11-14

Hamamatsu Hardware

Hamamatsu Hardware

If you are having trouble using the Image Acquisition Toolbox software with a
x Hamamatsu digital camera, follow these troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

¢ Make sure that your camera is plugged into the IEEE 1394 (FireWire)
port on your computer and is powered up.

¢ Run the application that came with your hardware and verify that you
can acquire video frames. Use the exAcq.exe application, available from
Hamamatsu.

2 Make sure you specified the hamamatsu adaptor when you created the video
input object. Some IEEE 1394 (FireWire) cameras can be accessed through
either the dcam or winvideo adaptors. See “Creating a Video Input Object”
on page 4-9 for more information about specifying adaptors.

3 Verify that you are using the correct hardware device driver that is
compatible with the toolbox. The Image Acquisition Toolbox software is
only compatible with specific driver versions provided by Hamamatsu and
is not guaranteed to work with any other versions.

* Find out the driver version you are using on your system.

e Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit the
Hamamatsu Software API Support page (www.dcamapi.com) to download
the correct driver that is supported by the toolbox, if it is available there. If
it is not available, please contact Hamamatsu to obtain the correct driver.

11-15

http://www.mathworks.com/products/imaq
http://www.dcamapi.com

11 1ou bleshooting

Matrox Hardware

In this section...

“Troubleshooting Matrox Devices” on page 11-16

“Determining the Driver Version for Matrox Devices” on page 11-17

Troubleshooting Matrox Devices

If you are having trouble using the Image Acquisition Toolbox software with a
supported Matrox frame grabber, follow these troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

For Matrox devices, run the application that came with your hardware,
Matrox Intellicam, and verify that you can receive live video.

2 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox. The Image
Acquisition Toolbox software is only compatible with specific driver
versions provided with the Matrox Imaging Library (MIL) or MIL-Lite
software and is not guaranteed to work with any other versions.

¢ Find out the driver version you are using on your system. To learn how
to get this information, see “Determining the Driver Version for Matrox
Devices” on page 11-17.

® Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit the
Matrox Web site (www.matrox.com) to download the correct drivers.

Note There is no difference between MIL and MIL-Lite software inside of
MATLAB. They both work with Matrox Imaging devices.

11-16

http://www.mathworks.com/products/imaq
http://www.matrox.com

Matrox® Hardware

Determining the Driver Version for Matrox Devices

To determine the Matrox Imaging Library version you are using, run the
Matrox MIL Configuration utility. You can access this software through the
Windows Start button.

Select Start > Programs > Matrox Imaging Products > MIL
Configuration.

The software version is listed on the Information tab.

[MIL Configuration =

Infarmatian | Licensingl Mon-paged Memoryl Troubleshootingl

Device driver |W
—.—

. MILLite?. 00(build 097) Lite: |
Version

L] d“applicationsimatroxtd|L

Zo MIL: C++ , ActiveMIL: C++

d Genesis, VEA

| @ 4096 Kb of non-paged memory

QK I Cancel Apply

Matrox® MIL Configuration Utility

11-17

11 1ou bleshooting

QIlmaging Hardware

In this section...

“Troubleshooting QImaging Devices” on page 11-18

“Determining the Driver Version for QImaging Devices” on page 11-19

Troubleshooting QImaging Devices

If you are having trouble using the Image Acquisition Toolbox software with a
supported x QImaging frame grabber, follow these troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

For QImaging devices, run the application that came with your hardware,
QCapture, and verify that you can receive live video.

2 Select Start > Programs > QCapture Suite > QCapture.

3 In QCapture, select Acquire > Live Preview to test that the hardware
is working properly.

4 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox.

Note The Image Acquisition Toolbox software is compatible only with
specific driver versions provided with the QImaging software and is not
guaranteed to work with any other versions.

¢ Find out the driver version you are using on your system. To learn
how to get this information, see “Determining the Driver Version for
QImaging Devices” on page 11-19.

¢ Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imag).

11-18

http://www.mathworks.com/products/imaq

QlImaging Hardware

If you discover that you are using an unsupported driver version, visit the
QImaging Web site (www.qgimaging.com) to download the correct drivers.

Determining the Driver Version for Qimaging Devices

To determine the QImaging driver version you are using, run the QImaging
QCapture utility.

Select Start > Programs > QCapture Suite > QCapture, and then select
Help > About to see the driver version number.

11-19

http://www.qimaging.com

11 1ou bleshooting

National Instruments Hardware

11-20

In this section...

“Troubleshooting National Instruments Devices” on page 11-20

“Determining the Driver Version for National Instruments Devices” on
page 11-21

Troubleshooting National Instruments Devices

If you are having trouble using the Image Acquisition Toolbox software with a
supported National Instruments® frame grabber, follow these troubleshooting
steps:

1 Verify that your image acquisition hardware is functioning properly.

For National Instruments devices, run the application that came with your
hardware, Measurement & Automation Explorer, and verify that you can
receive live video.

2 Select Start > Programs > National Instruments > Measurement
& Automation.

3 To test that the hardware is working properly, in Measurement &
Automation Explorer, expand Devices and Interfaces, then expand
NI-IMAQ Devices, then expand the node that represents the board you
want to use.

4 With the board expanded, select the channel or port that you have
connected a camera to.

5 Click the Grab button to verify that your camera is working. If it is not,
see the National Instruments device documentation.

6 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox.

National Instruments® Hardware

Note The Image Acquisition Toolbox software is compatible only with
specific driver versions provided with the National Instruments software
and is not guaranteed to work with any other versions.

¢ Find out the driver version you are using on your system. To learn how
to get this information, see Determining the Driver Version.

® Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imag).

If you discover that you are using an unsupported driver version, visit
the National Instruments Web site (www.ni.com) to download the correct
drivers.

Determining the Driver Version for National
Instruments Devices

To determine the National Instruments driver version you are using, run the
Measurement & Automation Explorer.

Select Help > System Information, and then see the NI-IMAQ Software
field for the driver version number.

11-21

http://www.mathworks.com/products/imaq
http://www.ni.com

11 1ou bleshooting

GigE Vision Hardware

In this section...

“Troubleshooting GigE Vision Devices on Windows” on page 11-22
“Troubleshooting GigE Vision Devices on Linux” on page 11-25

“Troubleshooting GigE Vision Devices on Mac” on page 11-27

Troubleshooting GigE Vision Devices on Windows
If you are having trouble using the Image Acquisition Toolbox software with a

GigE Vision camera on a Windows machine, using the toolbox’s gige adaptor,
follow these troubleshooting steps:

1 Verify that the adaptor loads. You can use the imaghwinfo command to list
installed adaptors. The gige adaptor should be included on the list.

If it does not load, make sure that GenICam is installed and the
environment variables exist. You can check this using the imagsupport
function.

If your camera requires a GenICam XML file on a local drive (most
cameras do not), and the adaptor loads but no devices are shown, check
the MWIMAQ_GENICAM_XML_FILES environment variable, and make sure it
contains the directory where your camera’s XML file is located.

For information on installing GenICam and checking your environment
variables, see “Software Configuration” on page 9-12.

2 Make sure you did not install your camera vendor’s filtering or performance
networking driver. If you did, you must uninstall it.

3 Make sure that anti-virus program drivers are unchecked in the Ethernet
card Properties.

For more information on this, see Step 3 in “Installation of GigE Vision
Cameras and Drivers” on page 9-4.

4 Make sure the Ethernet card is configured properly.

11-22

GigE Vision Hardware

For more information on this, see “Network Hardware Configuration Notes”
on page 9-3 and “Network Adaptor Configuration Notes” on page 9-6.

Also, if you have multiple cameras connected to multiple Ethernet cards,
you cannot have them all set to automatic IP configuration. You must
specify the IP address for each card and each card must be on a different
subnet.

Test the connectivity of your device separate from using the Image
Acquisition Toolbox. Use the vendor program included with your device to
see if you can detect and acquire images from the camera.

If you receive an error message such as:
“Block 23 is being dropped because packets are unavailable for resend.”

and it does not mention buffer size, it is likely that packets are being
dropped due to overload of the CPU. To lower the CPU load, raise the value
of the PacketSize device-specific (source) property. In order to do this,
you must be using hardware that supports jumbo frames.

You might also want to calculate and set the PacketDelay device-specific
(source) property.

Also, if you are using a CPU that is older than an Intel® Core 2 Quad ™ or
equivalent AMD®, you may experience this type of error.

If you have a slower computer and experience packet loss using the

GigE Vision adaptor, you can set a packet delay to avoid overloading the
computer. This is useful in solving the performance issue if you cannot
achieve your camera’s frame rate. The PacketDelay property will initially
be set to use the value that is your camera’s default value. You can then
adjust the value if needed. The TimeStampTickFrequency property is
read-only but is available for calculating the actual packet delay value is
being used.

For more information on the new PacketDelay property and how to
calculate packet delay, see this solution:

http://www.mathworks.com/support/solutions/en/data/1-F36R0OR/index.html

11-23

http://www.mathworks.com/support/solutions/en/data/1-F36R0R/index.html

11 1ou bleshooting

7 If you are able to start acquisition without error but do not receive any
frames, and if you are using a larger PacketSize, make sure that your
hardware and the network between the computer and the camera support
jumbo frames, and also that your Ethernet card driver is set to allow them
at the size that you are attempting to use.

8 The toolbox attaches the block ID (frame ID) as metadata to the frame. If
your camera does not start a new acquisition at block 1, if you want to know
if you lost initial frames, you can check the metadata. If the first frame’s

block ID is not 1, you may have some missing frames. For example, use
this command in MATLAB:

[d t m]=getdata(vid,2);
m(1)

The answer will include the Block ID and the FrameNumber.

9 Run the imagsupport function for further troubleshooting information.

11-24

GigE Vision Hardware

Troubleshooting GigE Vision Devices on Linux

If you are having trouble using the Image Acquisition Toolbox software with a
GigE Vision camera on a Linux machine, using the toolbox’s gige adaptor,
follow these troubleshooting steps:

1 Verify that the adaptor loads. You can use the imaghwinfo command to list
installed adaptors. The gige adaptor should be included on the list.

If it does not load, make sure that GenICam is installed and the
environment variables exist. You can check this using the imaqsupport
function.

If your camera requires a GenlCam XML file on a local drive (most
do not), and the adaptor loads but no devices are shown, check the
MWIMAQ_GENICAM_XML_FILES environment variable, and make sure it
contains the directory where your camera’s XML file is located.

For information on installing GenICam and checking your environment
variables, see “Software Configuration” on page 9-12.

2 Make sure you did not install your camera vendor’s filtering or performance
networking driver. If you did, you should uninstall it.

3 Make sure the Ethernet card is configured properly.

For more information on this, see “Network Hardware Configuration Notes”
on page 9-3 and “Network Adaptor Configuration Notes” on page 9-6.

Also, if you have multiple cameras connected to multiple Ethernet cards,
you cannot have them all set to automatic IP configuration. You must
specify the IP address for each card and each card must be on a different
subnet.

4 Examine the connectivity of your device separate from using the Image
Acquisition Toolbox. You may find using ping -b, arp, route, and
ifconfig helpful with this.

5 If you receive an error message such as:

“Block 23 is being dropped because packets are unavailable for resend”

11-25

11 1ou bleshooting

11-26

and it does not mention buffer size, it is likely that packets are being
dropped due to overload of the CPU. To lower the CPU load, raise the value
of the PacketSize device-specific (source) property. In order to do this,
you must be using hardware that supports jumbo frames.

You might also want to calculate and set the PacketDelay device-specific
(source) property.

Also, if you are using a CPU that is older than an Intel Core 2 Quad ™ or
equivalent AMD, you may experience this type of error.

If you have a slower computer and experience packet loss using the

GigE Vision adaptor, you can set a packet delay to avoid overloading the
computer. This is useful in solving the performance issue if you cannot
achieve your camera’s frame rate. The PacketDelay property will initially
be set to use the value that is your camera’s default value. You can then
adjust the value if needed. The TimeStampTickFrequency property is
read-only but is available for calculating the actual packet delay value is
being used.

For more information on the new PacketDelay property and how to
calculate packet delay, see this solution:

http://www.mathworks.com/support/solutions/en/data/1-F36ROR/index.html

6 If you are able to start acquisition without error but do not receive any

frames, and if you are using a larger PacketSize, make sure that your
hardware and the network between the computer and the camera support
jumbo frames, and also that your Ethernet interface is set to allow them at
the size that you are attempting to use.

7 If you receive an error that says a block or frame is being dropped because

a packet is unavailable for resend, one likely cause is that the buffer size of
the socket could not be set to the reported value, for example 40363392.

See your system administrator about using sysctl for net.core.rmem_max.
For example, the system administrator could try:

sysctl -w net.inet.udp.recvspace=40363392

if 40363392 was specified in the error message.

http://www.mathworks.com/support/solutions/en/data/1-F36R0R/index.html

GigE Vision Hardware

8 If your camera does not start a new acquisition at block 1, the toolbox will
attach the block ID (frame ID) as metadata to the frame. If you want to
know if you lost initial frames, you can check the metadata — if the first
frame’s block ID is not 1, you may have some missing frames. For example,
use this command in MATLAB:

[d t m]=getdata(vid,2);
m(1)

The answer will include the Block ID and the FrameNumber.

9 Run the imagsupport function for further troubleshooting information.

Troubleshooting GigE Vision Devices on Mac

If you are having trouble using the Image Acquisition Toolbox software with
a GigE Vision camera on a Mac machine, using the toolbox’s gige adaptor,
follow these troubleshooting steps:

1 Verify that the adaptor loads. You can use the imaghwinfo command to list
installed adaptors. The gige adaptor should be included on the list.

If it does not load, make sure that GenICam is installed and the
environment variables exist. You can check this using the imaqsupport
function.

If your camera requires a GenlCam XML file on a local drive (most
do not), and the adaptor loads but no devices are shown, check the
MWIMAQ_GENICAM_XML_FILES environment variable, and make sure it
contains the directory where your camera’s XML file is located.

For information on installing GenICam and checking your environment
variables, see “Software Configuration” on page 9-12.

2 Make sure you did not install your camera vendor’s filtering or performance
networking driver. If you did, you should uninstall it.

3 Make sure the Ethernet card is configured properly.

For more information on this, see “Network Hardware Configuration Notes”
on page 9-3 and “Network Adaptor Configuration Notes” on page 9-6.

11-27

11 1ou bleshooting

11-28

Also, if you have multiple cameras connected to multiple Ethernet cards,
you cannot have them all set to automatic IP configuration. You must
specify the IP address for each card and each card must be on a different
subnet.

Examine the connectivity of your device separate from using the Image
Acquisition Toolbox. You may find using ping -b, arp, route, and
ifconfig helpful with this.

If you receive an error message such as:
“Block 23 is being dropped because packets are unavailable for resend”

and it does not mention buffer size, it is likely that packets are being
dropped due to overload of the CPU. To lower the CPU load, raise the value
of the PacketSize device-specific (source) property. In order to do this,
you must be using hardware that supports jumbo frames.

You might also want to calculate and set the PacketDelay device-specific
(source) property.

Also, if you are using a CPU that is older than an Intel Core 2 Quad ™ or
equivalent AMD, you may experience this type of error.

If you have a slower computer and experience packet loss using the

GigE Vision adaptor, you can set a packet delay to avoid overloading the
computer. This is useful in solving the performance issue if you cannot
achieve your camera’s frame rate. The PacketDelay property will initially
be set to use the value that is your camera’s default value. You can then
adjust the value if needed. The TimeStampTickFrequency property is
read-only but is available for calculating the actual packet delay value is
being used.

For more information on the new PacketDelay property and how to
calculate packet delay, see this solution:

http://www.mathworks.com/support/solutions/en/data/1-F36ROR/index.html

6 If you are able to start acquisition without error but do not receive any

frames, and if you are using a larger PacketSize, make sure that your
hardware and the network between the computer and the camera support

http://www.mathworks.com/support/solutions/en/data/1-F36R0R/index.html

GigE Vision Hardware

jumbo frames, and also that your Ethernet interface is set to allow them at
the size that you are attempting to use.

7 If you receive an error that says a block or frame is being dropped because
a packet is unavailable for resend, one likely cause is that the buffer size of
the socket could not be set to the reported value, for example 40363392.

See your system administrator about using sysctl for net.core.rmem_max.
For example, the system administrator could try:

sysctl -w net.core.rmem_max=40363392

if 40363392 was specified in the error message.

8 If your camera does not start a new acquisition at block 1, the toolbox will
attach the block ID (frame ID) as metadata to the frame. If you want to
know if you lost initial frames, you can check the metadata — if the first
frame’s block ID is not 1, you may have some missing frames. For example,
use this command in MATLAB:

[d t m]=getdata(vid,2);
m(1)

The answer will include the Block ID and the FrameNumber.

9 Run the imagsupport function for further troubleshooting information.

11-29

11 1ou bleshooting

Windows Video Hardware

11-30

In this section...

“Troubleshooting Windows Video Devices” on page 11-30
“Determining the Microsoft DirectX Version” on page 11-31

Troubleshooting Windows Video Devices

If you are having trouble using the Image Acquisition Toolbox software with
a supported Windows video acquisition device, follow these recommended
troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

For Windows devices, run the application that came with your hardware
and verify that you can receive live video.

You can also verify your hardware by running the Microsoft image capture
application, AMCap.exe, which is included with the toolbox distribution. Go
to the matlabroot\toolbox\imaqg\imaq directory, where matlabroot is
your top-level installation directory, and double-click AMCAP . exe.

If you can start the utility, run the utility, and close the utility without
encountering any errors, the toolbox should be able to operate with your
image acquisition device. If you encounter errors, resolve them before
attempting to use the toolbox with the device.

2 If your hardware is functioning properly, verify that you are using
hardware device drivers that are compatible with the toolbox.

¢ Find out the driver version you are using on your system. The Image
Acquisition Toolbox software is only compatible with WDM (Windows
Driver Model) or VFW (Video for Windows) drivers. Contact the
hardware manufacturer to determine if the driver provided with your
hardware conforms to these driver classes.

¢ Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imag).

http://www.mathworks.com/products/imaq

Windows® Video Hardware

If you discover that you are using an unsupported driver version, visit the
hardware manufacturer’s Web site for the correct drivers.

Note The Windows Video driver is a generic interface and should only
be used if you do not have a more specific driver to use with your device.
For example, use the device-specific driver if your device has one. If your
device 1s a DCAM or FireWire device, use the DCAM driver. Only use the
Windows Video driver if there is no more specific option for your device.

Make sure you have the correct version of Microsoft DirectX installed on
your computer. The Image Acquisition Toolbox software is only compatible
with specific versions of the Microsoft DirectX multimedia technology and
1s not guaranteed to work with any other versions.

® Find out which driver version you are using on your system. To learn
how to get this information, see “Determining the Microsoft DirectX
Version” on page 11-31.

® Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct version information, check the
Image Acquisition Toolbox product page at the MathWorks Web site
(www.mathworks.com/products/imaq).

If you discover that you are using an unsupported version, visit the
Microsoft DirectX Web site (www.microsoft.com/directx/) for the correct
version of DirectX.

Determining the Microsoft DirectX Version

To determine the version of Microsoft DirectX you are using, run the DirectX
Diagnostic Tool. You can access this software through the Windows Start
button.

Select Start > Run.

In the Run dialog box, launch the DirectX Diagnostic Tool by opening the
dxdiag program.

11-31

http://www.mathworks.com/products/imaq
http://www.microsoft.com/directx/

11 1ou bleshooting

Type the name of a program, folder, document, or
Internet resource, and Windows will open it For you,

2|

Open: I diediag]

.

=

Cancel | Browse... |

¥ DirectX Diagnostic Tool

System |D1'rectX F|Ies| Displa'_.'l Sound I Music I Input I MNetwarl I More Helpl

This tool reports detailed information about the Directy components and drivers installed on your system. Itlets you test functionality,

diagnose problems, and change your system configuration to work best,

If you know what area is causing the problem, dick the appropriate tab above, Otherwise, you can use the ™ext Page” button below to
visit each page in sequence,

The ™More Help” page lists some other tools that may help with the problem you are experiencing.

rSystem Information

In the DirectX Diagnostic Tool, the Microsoft DirectX version is listed on the
System tab under the System Information section.

=101]

Current DateTime:
Computer Name:
Operating System:
Language:

System Manufacturer:
System Model;

BIOS:

Processor:

Memory:

Page file:

Directx Version:

[Check for WHOL digital signatures

Manday, November 24, 2008, 16:35:07
I

Microsoft Windows XP Professional (5. 1, Build 2600)
English (Regional Setting: English)

System manufacturer

System name

Phoenix - Award BIQS v&.00PG

AMD Athlon(tm) 64 Processor 3500+, MMX, 3DMow, ~2,2GHz
1024MBE RAM

F04MB used, 1756MEB available

DirectX 9.0c (4.09,0000,0904)

DxDiag 5.03.2600,5512 Unicode Copyright © 1998-2003 Microsoft Corporation. All rights reserved.

Help

Next Page I Save All Information...

Exit

DirectX® Diagnostic Tool

11-32

Linux® Video Hardware

Linux Video Hardware

Troubleshooting Linux Video Devices

If you have trouble using the Image Acquisition Toolbox software with
a supported Linux Video acquisition device, follow these recommended
troubleshooting steps:

1 Verify that your image acquisition hardware functions properly and that
you have permission to access it.

Be sure that your system and login have the proper permissions to access
the hardware. See your system administrator if you need help.

You can verify that your hardware functions properly by running the
WebCam application that came with your Linux distribution, for example,
Cheese or Camorama.

If you can start the utility, run the utility, and close it without encountering
any errors, the toolbox should be able to operate with your image
acquisition device. If you encounter errors, resolve them before attempting
to use the toolbox with the device.

2 If your hardware is functioning properly, verify that you are using
hardware device drivers that are compatible with the toolbox.

® Determine the driver version you are using on your system. The Image
Acquisition Toolbox software is only compatible with Video 4 Linux 2
drivers. It is not supported for Video 4 Linux 1. Contact the hardware
manufacturer to determine if the driver provided with your hardware
conforms to these driver classes.

® Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imag).

11-33

http://www.mathworks.com/products/imaq

11 1ou bleshooting

Note The Linux Video driver is a generic interface and you should only
use 1t if you do not have a more specific driver to use with your device. If
your device is a DCAM or FireWire device, use the DCAM driver. Only use
the Linux Video driver if there is no more specific option for your device.

11-34

Linux® DCAM IEEE® 1394 Hardware

Linux DCAM IEEE 1394 Hardware

Troubleshooting Linux DCAM Devices

If you are having trouble using the Image Acquisition Toolbox software with a
supported Linux DCAM IEEE 1394 hardware acquisition device, follow these
recommended troubleshooting steps:

1 Verify that your IEEE 1394 (FireWire) camera can be accessed through
the dcam adaptor.

e Make sure the camera is compliant with the IIDC 1394-based
Digital Camera (DCAM) specification. Vendors typically include this
information in documentation or data sheet that comes with the camera.
If your digital camera is not DCAM compliant, you should be able to use
the Linux Video adaptor.

2 Verify that your image acquisition hardware is functioning properly and
that you have permission to access it.

Be sure that your system and log-in have the proper permissions to access
the hardware. See your system administrator if you need help.

You can verify that your hardware is functioning properly by running
Coriander. See your system administrator if you need help installing
Coriander.

If you can start the utility, run the utility, and close the utility without
encountering any errors, the toolbox should be able to operate with your
image acquisition device. If you encounter errors, resolve them before
attempting to use the toolbox with the device.

11-35

11 1ou bleshooting

Macintosh Video Hardware

11-36

Troubleshooting Macintosh Video Devices

If you are having trouble using the Image Acquisition Toolbox software with
a supported Macintosh® video acquisition device, follow these recommended
troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

You can verify that your hardware is functioning properly by running the
WebCam application that came with OSX, for example, Photo Booth or
iMovie.

If you can start the utility, run the utility, and close the utility without
encountering any errors, then the toolbox should be able to operate with
your image acquisition device. If you encounter errors, resolve them before
attempting to use the toolbox with the device.

2 Verify that you can access your device through the Macintosh Video
Adaptor.

¢ Make sure the camera complies with QuickTime.

Note The Macintosh Video Adaptor is a generic interface and should only
be used if you do not have a more specific adaptor to use with your device.
If your device is a DCAM or FireWire device, use the DCAM adaptor.
Only use the Macintosh Video Adaptor if there is no more specific option
for your device.

3 Make sure you have QuickTime installed on your computer. If you do not
have it installed, you can download it.

Macintosh® DCAM [EEE® 1394 Hardware

Macintosh DCAM IEEE 1394 Hardware

Troubleshooting Macintosh DCAM Devices

If you are having trouble using the Image Acquisition Toolbox software with a
supported Macintosh DCAM IEEE 1394 hardware acquisition device, follow
these recommended troubleshooting steps:

1 Verify that your IEEE 1394 (FireWire) camera can be accessed through
the dcam adaptor.

¢ Make sure the camera complies with the IIDC 1394-based Digital
Camera (DCAM) specification. Vendors typically include this
information in documentation that comes with the camera. If your
digital camera is not DCAM compliant, you might be able to use the
Macintosh Video Adaptor.

2 Verify that your image acquisition hardware is functioning properly.

You can verify that your hardware is functioning properly by running an
external webcam application, for example, Photo Booth or iMovie.

If you can start the utility, run the utility, and close the utility without
encountering any errors, then the toolbox should be able to operate with
your image acquisition device. If you encounter errors, resolve them before
attempting to use the toolbox with the device.

11-37

11 1ou bleshooting

Video Preview Window Troubleshooting

When previewing the video stream, if you encounter a problem, try one of
the following solutions.

Problem Possible Solutions

Video Preview window stops | ® Close the preview window and reopen it.

running. ¢ Verify that your image acquisition device

1s working properly. Close MATLAB and
run the application that came with your
device.

e Make sure no other application is using
the device.

Video Preview window ® (Close the preview window and reopen it.
displays blank, gray

. . .
window. Check memory usage. It is possible that

there is not enough memory available for
the incoming image data. To increase
the memory allocation, use the imagmem
function and specify a higher value for the
FrameMemoryLimit.

® Make sure no other application is using
the device.

Video Preview window ® (Close the preview window and reopen it.
displays dropped frames

¢ Check memory usage. It is possible that
message.

there is not enough memory available for
the incoming image data. To increase
the memory allocation, use the imagmem
function and specify a higher value for the
FrameMemoryLimit.

11-38

Contacting MathWorks and Using the imagsupport Function

Contacting MathWorks and Using the imaqsupport
Function

If you need support from MathWorks, visit our Web site at
http://www.mathworks.com/support/.

Before contacting MathWorks, you should run the imaqsupport function.
This function returns diagnostic information such as:

¢ The versions of MathWorks products you are using

Your MATLAB path

The characteristics of your hardware

Information about your adaptors

The output from imagsupport is automatically saved to a text file,
imagsupport.txt, which you can use to help troubleshoot your problem.

To have MATLAB generate this file for you, type

imaqgsupport

11-39

http://www.mathworks.com/support/

11 1ou bleshooting

11-40

Function Reference

General-Purpose Objects (p. 12-2)
Triggering (p. 12-3)

Data (p. 12-3)

Tools (p. 12-4)

Getting Command-Line Function
Help (p. 12-5)

Functions related to objects
Functions related to triggering
Functions related to data

Functions related to image
acquisition tools

Command-line function help

12 Function Reference

General-Purpose Objects

Video input objects have one or more video source objects associated with
them. In this table, functions that work on both types of objects use the
phrase “image acquisition object” to refer to both types of objects.

clear Clear image acquisition object from
MATLAB workspace

delete Remove image acquisition object
from memory

disp Display method for image acquisition
objects

get Return image acquisition object
properties

getselectedsource Return currently selected video
source object

imagfind Find image acquisition objects

islogging Determine whether video input

object 1s logging
isrunning Determine whether video input

object is running

isvalid Determine whether image
acquisition object is associated
with image acquisition device

load Load image acquisition object into
MATLAB workspace

obj2mfile Convert video input objects to
MATLAB code

save Save image acquisition objects to
MAT-file

set Configure or display image

acquisition object properties

12-2

Triggering

Triggering

Data

start

stop
videoinput

wait

trigger

triggerconfig

triggerinfo

flushdata

getdata

getsnapshot

peekdata

Obtain exclusive use of image
acquisition device

Stop video input object
Create video input object

Wait until image acquisition object
stops running or logging

Initiate data logging

Configure video input object trigger
properties

Provide information about available
trigger configurations

Remove data from memory buffer
used to store acquired image frames

Acquired image frames to MATLAB
workspace

Immediately return single image
frame

Most recently acquired image data

12-3

12 Function Reference

Tools

closepreview Close Video Preview window

imaghelp Image acquisition object function
and property help

imaghwinfo Information about available image
acquisition hardware

imagmem Limit memory or display memory
usage for Image Acquisition Toolbox
software

imagmontage Sequence of image frames as
montage

imaqgreset Disconnect and delete all image
acquisition objects

imaqtool Launch Image Acquisition Tool

preview Preview of live video data

propinfo Property characteristics for image

acquisition objects

stoppreview Stop previewing video data

12-4

Getting Command-Line Function Help

Getting Command-Line Function Help

To get command-line function help, you can use the MATLAB help function.
For example, to get help for the getsnapshot function, type the following:

help getsnapshot

However, the Image Acquisition Toolbox software provides “overloaded”
versions of several MATLAB functions. That is, it provides toolbox-specific
implementations of these functions using the same function name.

For example, the Image Acquisition Toolbox software provides an overloaded
version of the delete function. You get help for the MATLAB version of this
function if you type the following:

help delete

You can determine if a function is overloaded by examining the last section
of the help. For delete, the help contains the following overloaded versions
(not all are shown):

Overloaded methods
help char/delete.m
help scribehandle/delete.m
help scribehgobj/delete.m

help imaqgdevice/delete.m

To obtain help on the Image Acquisition Toolbox version of this function,
type the following:

help imaqdevice/delete

To avoid having to specify which overloaded version you want to view, use
the imaghelp function:

imaghelp delete

12-5

12 Function Reference

You can also use this function to get help on image acquisition object
properties. For more information on overloaded functions and class
directories, refer to MATLAB Classes and Objects in the Help browser.

12-6

Functions — Alphabetical
List

clear

Purpose Clear image acquisition object from MATLAB workspace

Syntax clear obj

Description clear obj removes the image acquisition object obj from the MATLAB
workspace. obj can be either a video input object or a video source
object.

It is important to note that if you clear a video input object that is
running (the Running property is set to 'on'), the object continues
executing.

You can restore cleared objects to the MATLAB workspace with the
imagfind function.

To remove an image acquisition object from memory, use the delete
function.

See Also delete | imaqfind | isvalid

13-2

closepreview

Purpose

Syntax

Description

See Also

Close Video Preview window

closepreview(obj)
closepreview

closepreview(obj) stops the image acquisition object obj from
previewing and, if the default Video Preview window was used, closes
the window.

closepreview stops all image acquisition objects from previewing and,
for all image acquisition objects that used the default Video Preview
window, closes the windows.

Note that if the preview window was created with a user-specified
image object handle as the target, closepreview does not close the
figure window.

preview | stoppreview

13-3

delete

13-4

Purpose
Syntax

Description

Examples

See Also

Remove image acquisition object from memory
delete(obj)

delete(obj) removes obj, an image acquisition object or array of
image acquisition objects, from memory. Use delete to free memory at
the end of an image acquisition session.

If obj is an array of image acquisition objects and one of the objects
cannot be deleted, the delete function deletes the objects that can be
deleted and returns a warning.

When obj is deleted, it becomes invalid and cannot be reused. Use
the clear command to remove invalid image acquisition objects from
the MATLAB workspace.

If multiple references to an image acquisition object exist in the
workspace, deleting the image acquisition object invalidates the
remaining references. Use the clear command to delete the remaining
references to the object from the workspace.

If the image acquisition object obj is running or being previewed, the
delete function stops the object and closes the preview window before
deleting it.

Create a video object, preview the object, then delete the object:
vid = videoinput('winvideo', 1);

preview(vid);
delete(vid);

imaqfind | isvalid | videoinput

disp

Purpose

Syntax

Description

Examples

Display method for image acquisition objects

obj
disp(obj)
obj displays summary information for image acquisition object obj.

disp(obj) displays summary information for image acquisition object
obj.

If obj is an array of image acquisition objects, disp outputs a table of
summary information about the image acquisition objects in the array.

In addition to the syntax shown above, you can display summary
information for obj by excluding the semicolon when:

¢ Creating an image acquisition object, using the videoinput function

¢ Configuring property values using the dot notation

This example illustrates the summary display of a video input object.
vid = videoinput('winvideo')
vid = videoinput('winvideo')
Summary of Video Input Object Using 'IBM PC Camera'.
Acquisition Source(s): inputl is available.
Acquisition Parameters: ‘'inputi' is the current selected source.
10 frames per trigger using the selected source
'RGBES55_126x96G' video data to be logged upon &
Grabbing first of every 1 frame(s).
Log data to 'memory' on trigger.
Trigger Parameters: 1 'immediate’ triggeris) on START.
Status: Waiting for START.

0 frames acquired since starting.
0 frames available for GETDATA.

13-5

disp

This example shows the summary information displayed for an array of
video input objects.

vid2 = videoinput('winvideo');
[vid vid2]

Video Input Object Array:

Index: Type: Name:

1 videoinput RGB555_128x96-winvideo-1

2 videoinput RGB555_128x96-winvideo-1
See Also videoinput

13-6

flushdata

Purpose Remove data from memory buffer used to store acquired image frames

Syntax flushdata(obj)
flushdata(obj,mode)

Description flushdata(obj) removes all the data from the memory buffer used to
store acquired image frames. obj can be a single video input object
or an array of video input objects.

flushdata(obj,mode) removes all the data from the memory buffer
used to store acquired image frames, where mode can have either of
the following values:

Mode Description

‘all' Removes all the data from the memory buffer and
sets the FramesAvailable property to O for the video
input object obj. This is the default mode when none
is specified, flushdata(obj).

"triggers' Removes data from the memory buffer that was
acquired during the oldest trigger executed.
TriggerRepeat must be greater than 0 and
FramesPerTrigger must not be set to inf.

See Also getdata | imaghelp | peekdata | propinfo | videoinput

13-7

get

13-8

Purpose

Syntax

Description

Examples

See Also

Return image acquisition object properties

get(obj)
V = get(obj)
V = get(obj,PropertyName)

get(obj) displays all property names and their current values for
image acquisition object obj.

V = get(obj) returns a structure, V, in which each field name is the
name of a property of obj and each field contains the value of that

property.

V = get(obj,PropertyName) returns the value of the property
specified by PropertyName for image acquisition object obj. Use the
get(obj) syntax to view a list of all the properties supported by a
particular image acquisition object.

If PropertyName is a 1-by-N or N-by-1 cell array of strings containing
property names, V is a 1-by-N cell array of values. If obj is a vector of
image acquisition objects, V is an M-by-N cell array of property values
where M is equal to the length of obj and N is equal to the number of
properties specified.

Create video object, then get values of two frame-related properties,
then display all proprieties of the object:

vid = videoinput('matrox', 1);

get(vid, {'FramesPerTrigger', 'FramesAcquired'})
out = get(vid, 'LoggingMode’)

get(vid);

set | videoinput

getdata

Purpose Acquired image frames to MATLAB workspace
Syntax data = getdata(obj)

data = getdata(obj,n)

data = getdata(obj,n,type)

data = getdata(obj,n,type,format)

[data,time] = getdata(...)
[data, time, metadata] = getdata(...)

Description data = getdata(obj) returns data, which contains the number of
frames specified in the FramesPerTrigger property of the video input
object obj. obj must be a 1-by-1 video input object.

data is returned as an H-by-W-by-B-by-F matrix where

H Image height, as specified in the object’s ROIPosition
property

w Image width, as specified in the object’s ROIPosition
property

B Number of color bands, as specified in the Number0OfBands
property

F The number of frames returned

data is returned to the MATLAB workspace in its native data type
using the color space specified by the ReturnedColorSpace property.

You can use the MATLAB image or imagesc functions to view the
returned data. Use imagmontage to view multiple frames at once.

data = getdata(obj,n) returns n frames of data associated with the
video input object obj.

data = getdata(obj,n,type) returns n frames of data associated with
the video input object obj, where type is one of the text strings in the
following table that specify the data type used to store the returned
data.

13-9

getdata

13-10

Type String | Data Type

'uint8' Unsigned 8-bit integer

'uint16' Unsigned 16-bit integer

'uint32' Unsigned 32-bit integer

'single’ Single precision

'double’ Double precision

'native’ Uses native data type. This is the default.

If type is not specified, 'native’ is used as the default. If there is no
MATLAB data type that matches the object’s native data type, getdata
chooses a MATLAB data type that preserves numerical accuracy.

For example, the components of 12-bit RGB color data would each be
returned as uint8 data.

data = getdata(obj,n,type,format) returns n frames of data
associated with the video input object obj, where format is one of the
text strings in the following table that specify the MATLAB format
of data.

Format

String Description

'numeric' Returns data as an H-by-W-by-B-by-F array. This is
the default format if none is specified.

‘cell' Returns data as an F-by-1 cell array of H-by-W-by-B
matrices

[data,time] = getdata(...) returns time, an F-by-1 matrix, where
F is the number of frames returned in data. Each element of time
indicates the relative time, in seconds, of the corresponding frame in
data, relative to the first trigger.

time = 0 is defined as the point at which data logging begins. When
data logging begins, the object’s Logging property is set to 'On'. time
is measured continuously with respect to 0 until the acquisition stops.

getdata

Examples

When the acquisition stops, the object’s Running property is set to
"Off'.

[data, time, metadata] = getdata(...) returns metadata, an
F-by-1 array of structures, where F is the number of frames returned
in data. Each structure contains information about the corresponding
frame in data. The metadata structure contains these fields:

Metadata Field | Description

'AbsTime' Absolute time the frame was acquired, expressed
as a time vector

'FrameNumber' Number identifying the nth frame since the
start command was issued

‘RelativeFrame' | Number identifying the nth frame relative to the
start of a trigger

'TriggerIndex' Number of the trigger in which this frame was
acquired

getdata is a blocking function that returns execution control to the
MATLAB workspace after the requested number of frames becomes
available within the time period specified by the object’s Timeout
property. The object’s FramesAvailable property is automatically
reduced by the number of frames returned by getdata. If the requested
number of frames is greater than the frames to be acquired, getdata
returns an error.

It is possible to issue a Ctrl+C while getdata is blocking. This does not
stop the acquisition but does return control to MATLAB.

Construct a video input object associated with a Matrox device at ID 1.

obj = videoinput('matrox', 1);

Initiate an acquisition and access the logged data.

start(obj);

13-11

getdata

data = getdata(obj);

Display each image frame acquired.

imagmontage(data);

Remove the video input object from memory.

delete(obj);

See Also getsnapshot | imaghelp | imagmontage | peekdata | propinfo

13-12

getselectedsource

Purpose
Syntax

Description

See Also

Return currently selected video source object

src = getselectedsource(obj)

src = getselectedsource(obj) searches all the video source objects
associated with the video input object obj and returns the video source
object, src, that has the Selected property value set to 'on'.

To select a source for acquisition, use the SelectedSourceName property
of the video input object.

obj must be a 1-by-1 video input object.

imaghelp | get | videoinput

13-13

getsnapshot

Purpose Immediately return single image frame
Syntax frame = getsnapshot(obj)
Description frame = getsnapshot(obj) immediately returns one single image

frame, frame, from the video input object obj. The frame of data
returned is independent of the video input object FramesPerTrigger
property and has no effect on the value of the FramesAvailable or
FramesAcquired property.

The object obj must be a 1-by-1 video input object.

frame is returned as an H-by-W-by-B matrix where

H Image height, as specified in the ROIPosition property
" Image width, as specified in the ROIPosition property
B Number of bands associated with obj, as specified in the

NumberOfBands property
frame is returned to the MATLAB workspace in its native data type
using the color space specified by the ReturnedColorSpace property.

You can use the MATLAB image or imagesc function to view the
returned data.

Note If obj is running but not logging, and has been configured with a
hardware trigger, a timeout error will occur.

To interrupt the getsnapshot function and return control to the
MATLAB command line, issue the “C (Ctrl+C) command.

Examples Create a video input object.

obj = videoinput('matrox', 1);

13-14

getsnapshot

See Also

Acquire and display a single frame of data.

frame = getsnapshot(obj);
image(frame);

Remove the video input object from memory.

delete(obj);

For an example of using getsnapshot, see the Image Acquisition
Toolbox demo Acquiring a Single Image in a Loop, or open the file
demoimaq_GetSnapshot.m in the MATLAB Editor.

getdata | imaghelp | peekdata

13-15

imagfind

Purpose

Syntax

Description

13-16

Find image acquisition objects

imaqfind

out imagfind

out = imaqfind(PropertyName, Value, PropertyName2, Value2,
ces)

out = imaqfind(S)

out imagfind(obj, PropertyName, Value, PropertyName2,
Value2,...)

imaqgfind returns an array containing all the video input objects that
exist in memory. If only a single video input object exists in memory,
imaqgfind displays a detailed summary of that object.

out = imaqgfind returns an array, out, of all the video input objects
that exist in memory.

out = imaqfind(PropertyName, Value, PropertyName2,
Value2,...) returns a cell array, out, of image acquisition objects
whose property names and property values match those passed as
arguments. You can specify the property name/property value pairs in a
cell array. You can use a mixture of strings, structures, and cell arrays.
Use the get function to determine the list of properties supported by an
image acquisition object.

out = imaqfind(S) returns a cell array, out, of image acquisition
objects whose property values match those defined in the structure S.
The field names of S are image acquisition object property names and
the field values are the requested property values.

out = imaqfind(obj, PropertyName, Value, PropertyName2,
Value2,...) restricts the search for matching parameter/value pairs
to the image acquisition objects listed in obj. obj can be an array of
image acquisition objects.

imagfind

Examples

See Also

Note When searching for properties with specific values, imaqfind
performs case-sensitive searches. For example, if the value of an object’s
Name property is 'MyObject', imaqfind does not find a match if you
specify 'myobject'. Note, however, that searches for properties that
have an enumerated list of possible values are not case sensitive. For
example, imaqfind will find an object with a Running property value of
'Off' or 'off'. Use the get function to determine the exact spelling
of a property value.

To illustrate various imagfind syntaxes, first create two video input
objects.

obj1
obj2

videoinput('matrox',1,'M_RS170','Tag', 'FrameGrabber');
videoinput('winvideo',1, 'RGB24_320x240','Tag', 'Webcam');

Now use imaqfind to find these objects by type and tag.

out1 = imaqfind('Type', 'videoinput')
out2 imaqfind('Tag', 'FrameGrabber')
out3 imaqfind({'Type', 'Tag'}, {'videoinput', 'Webcam'})

get | videoinput

13-17

imagqhelp

Purpose

Syntax

Description

Examples

13-18

Image acquisition object function and property help

imaghelp

imaghelp (Name)
imaghelp(obj)
imaghelp(obj ,Name)
out = imaghelp(...)

imaghelp provides a complete listing of image acquisition object
functions.

imaghelp (Name) provides online help for the function or property
specified by the text string Name.

imaghelp(obj) displays a listing of functions and properties for the
image acquisition object obj along with the online help for the object’s
constructor. obj must be a 1-by-1 image acquisition object.

imaghelp(obj,Name) displays the help for the function or property
specified by the text string Name for the image acquisition object obj.

If Name is a device-specific property name, obj must be provided.
out = imaghelp(...) returns the help text in string out.

When property help is displayed, the names in the “See Also” section
that contain all uppercase letters are function names. The names that
contain a mixture of upper- and lowercase letters are property names.

When function help is displayed, the “See Also” section contains only
function names.

Getting general function and property help.

imaghelp('videoinput')

out = imaghelp('videoinput');
imaghelp set

imaghelp LoggingMode

Getting property help with device-specific information.

imagqhelp
|

vid videoinput('dt', 1);
src = getselectedsource(vid);
imaqhelp(vid, 'TriggerType')
imaghelp(src, 'FrameRate')

See Also propinfo

13-19

imaghwinfo

Purpose

Syntax

Description

13-20

Information about available image acquisition hardware

out = imaghwinfo

out = imaghwinfo(adaptorname)

out = imaghwinfo (adaptorname,field)

out = imaghwinfo(adaptorname, devicelD)
out = imaghwinfo(obj)

out = imaghwinfo(obj,field)

out = imaghwinfo returns out, a structure that contains information
about the image acquisition adaptors available on the system. An
adaptor is the interface between MATLAB and the image acquisition
devices connected to the system. The adaptor’s main purpose is to pass
information between MATLAB and an image acquisition device via its
driver.

out = imaghwinfo(adaptorname) returns out, a structure that
contains information about the adaptor specified by the text string
adaptorname. The information returned includes adaptor version and
available hardware for the specified adaptor. To get a list of valid
adaptor names, use the imaghwinfo syntax.

out = imaghwinfo(adaptorname,field) returns the value of the field
specified by the text string field for the adaptor specified by the text
string adaptorname. The argument can be a single string or a cell array
of strings. If field is a cell array, out is a 1-by-n cell array where

n is the length of field. To get a list of valid field names, use the
imaghwinfo('adaptorname') syntax.

out = imaqghwinfo(adaptorname, devicelD) returns out, a structure
containing information about the device specified by the numeric device
ID devicelID. The devicelID can be a scalar or a vector. If deviceID is a
vector, out is a 1-by-n structure array where n is the length of deviceID.

out = imaghwinfo(obj) returns out, a structure that contains
information about the specified image acquisition object obj. The
information returned includes the adaptor name, device name, video
resolution, native data type, and device driver name and version. If obj

imaghwinfo

1s an array of device objects, then out is a 1-by-n cell array of structures
where n is the length of obj.

out = imaghwinfo(obj,field) returns the information in the field
specified by field for the device object obj. field can be a single field
name or a cell array of field names. out is an m-by-n cell array where m
is the length of obj and n is the length of field. You can return a list of
valid field names with the imaghwinfo(obj) syntax.

Note After you call imaghwinfo once, hardware information is cached
by the toolbox. To force the toolbox to search for new hardware that
might have been installed while MATLAB was running, use imaqreset.

Examples This example returns information about all the adaptors available on

the system.
imaghwinfo
ans =

InstalledAdaptors:
MATLABVersion:
ToolboxName:
ToolboxVersion:

{'matrox' ‘'winvideo'}

'7.4 (R2007a)'

‘Image Acquisition Toolbox'
'2.1 (R2007a)"

This example returns information about all the devices accessible
through a particular adaptor.

info = imaqghwinfo('winvideo')
info =
AdaptorDl1lName: [1x73 char]
AdaptorDllVersion: '2.1 (R2007a)'
AdaptorName: 'winvideo'
DevicelIDs: {[1]}
DeviceInfo: [1x1 struct]

13-21

imaghwinfo

This example returns information about a specific device accessible
through a particular adaptor. You identify the device by its device ID.

dev_info = imaghwinfo('winvideo', 1)

dev_info

DefaultFormat: 'RGB555_128x96'
DeviceFileSupported: 0
DeviceName: 'IBM PC Camera'
DevicelID: 1
ObjectConstructor: 'videoinput('winvideo', 1)’
SupportedFormats: {1x34 cell}

This example gets information about the device associated with a
particular video input object.

obj = videoinput('winvideo', 1);

obj_info = imaghwinfo(obj)

obj_info

AdaptorName: 'winvideo'
DeviceName: 'IBM PC Camera'
MaxHeight: 96

Maxwidth: 128
NativeDataType: 'uint8'
TotalSources: 1
VendorDriverDescription: 'Windows WDM Compatible Driver'
VendorDriverVersion: 'DirectX 9.0'

This example returns the value of a particular field in the device
information associated with a particular video input object.

field_info
field_info

imaghwinfo(vid, 'adaptorname')

13-22

imaghwinfo

winvideo

See Also imaghelp | imaqreset

13-23

imagmem

Purpose

Syntax

Description

13-24

Limit memory or display memory usage for Image Acquisition Toolbox
software

mem = imaqgmem
imagmem(field)

imagmem(limit)

mem = imagmem returns a structure containing the following fields:

Field Description

MemorylLoad Number between 0 and 100 that gives a general
idea of current memory utilization.

TotalPhys Total number of bytes of physical memory.

AvailPhys Number of bytes of physical memory currently
available.

TotalPageFile Total number of bytes that can be stored in the
paging file.

AvailPageFile Number of bytes available in the paging file.

TotalVirtual Total number of bytes that can be addressed
in the user mode portion of the virtual address
space. This is a Windows only property.

AvailVirtual Number of bytes of unreserved and uncommitted
memory in the user mode portion of the virtual
address space. This is a Windows only property.

FrameMemoryLimit| Total number of bytes image acquisition frames
can occupy in memory.

By default, the toolbox sets this limit to equal
all available physical memory at the time the
toolbox is first used or queried.

FrameMemoryUsed | Number of bytes currently allocated by the Image
Acquisition Toolbox software.

imagmem

imagmem(field) returns information for the field specified by the text

string field.

imagmem(limit) configures the frame memory limit, in bytes, for the
Image Acquisition Toolbox software. 1imit is used to determine the
maximum amount of memory the toolbox can use for logging image

frames.

Note Configuring the frame memory limit does not remove any logged
frames from the image acquisition memory buffer. To remove frames
from the buffer, you can bring them into the MATLAB workspace,
using the getdata function, or remove them from memory, using the

flushdata function.

Examples
imaqmem

ans =

MemoryLoad:
TotalPhys:
AvailPhys:

TotalPageFile:
AvailPageFile:
TotalVirtual:
AvailVirtual:
FrameMemoryLimit:
FrameMemoryUsed:

Use imagmem to get information about system memory.

85
263766016
37306368
643878912
391446528
2.1474e+009
1.6307e+009
38313984

0

Retrieve information about a specific field returned by imagmem.

memlimit =

memlimit

imagmem('FrameMemoryLimit"')

13-25

imagmem

38313984

Specify the amount of memory available for the toolbox to log image
frames (FrameMemoryLimit).

imagmem(30000000)
ans =

MemoryLoad: 85
TotalPhys: 263766016
AvailPhys: 37634048

TotalPageFile: 643878912
AvailPageFile: 391479296
TotalVirtual: 2.1474e+009
AvailVirtual: 1.6307e+009
FrameMemoryLimit: 30000000
FrameMemoryUsed: 0

See Also flushdata | getdata | videoinput

13-26

imagmontage

Purpose

Syntax

Description

Examples

Sequence of image frames as montage

imagmontage (frames)

imagmontage (obj)

imagmontage(...,CLIM)

imagmontage(..., 'CLim', CLIM, 'Parent', PARENT)
h = imagmontage(...)

imagmontage (frames) displays a montage of image frames in a
MATLAB figure window using the imagesc function.

frames can be any data set returned by getdata, peekdata, or
getsnapshot.

imagmontage (obj) calls the getsnapshot function on video input object
obj and displays a single image frame in a MATLAB figure window
using the imagesc function. obj must be a 1-by-1 video input object.

imagmontage(...,CLIM) displays a montage of image frames, where
CLIM is a two-element vector, [CLOW CHIGH], specifying the image
scaling. Use CLIM to specify a scaling value when overscaling the image
data is a risk, for example, when you are working with devices that
provide data in a 12-bit format.

imagmontage(..., 'CLim', CLIM, 'Parent', PARENT) where CLIMis
as noted previously, and PARENT is a valid AXES object that allows you
to specify where the montage is displayed. One or both property/value
pairs can be specified. See the example below.

h = imagmontage(...) returns a handle to an image object.

Construct a video input object associated with a Matrox device at ID 1.

obj = videoinput('matrox', 1);

Initiate an acquisition and access the logged data.

start(obj);
data = getdata(obj);

13-27

imagmontage

See Also

13-28

Create an axes object.

a = axes;

Display each image frame acquired on axes a.

imagmontage(data, 'Parent', a);

Remove the video input object from memory.

delete(obj);

getdata | getsnapshot | imaghelp | peekdata

imagqreset

Purpose
Syntax

Description

See Also

Disconnect and delete all image acquisition objects
imaqgreset

imagreset deletes any image acquisition objects that exist in memory
and unloads all adaptors loaded by the toolbox. As a result, the image
acquisition hardware is reset.

imagreset is the image acquisition command that returns MATLAB to
the known state of having no image acquisition objects and no loaded
image acquisition adaptors.

You can use imaqreset to force the toolbox to search for new hardware
that might have been installed while MATLAB was running.

Note that imaqreset should not be called from any of the callbacks of a
videoinput object, such as the StartFcn or FramesAcquiredFcn.

delete | videoinput

13-29

imagqtool

Purpose

Syntax

Description

Tutorials

13-30

Launch Image Acquisition Tool

imaqtool
imaqtool(file)

imaqtool launches an interactive GUI to allow you to explore,
configure, and acquire data from your installed and supported image
acquisition devices.

The functionality of the Image Acquisition Toolbox software is available
in this desktop application. You connect directly to your hardware in
the tool and can preview and acquire image data. You can log the
data to MATLAB in several formats, and also generate an AVI file,
right from the tool.

The Image Acquisition Tool provides a desktop environment that
integrates a preview/acquisition area with Acquisition Parameters so
that you can change settings and see the changes dynamically applied
to your image data.

For complete information on how to use the Image Acquisition Tool, see
Using the Image Acquisition Tool GUI.

imaqtool(file) starts the tool and then immediately reads an Image
Acquisition Tool configuration file, where file is the name of an
IAT-file that you previously saved.

This configuration file contains parameter settings that you save using
File > Save Configuration in the tool.

* Chapter 3, “Using the Image Acquisition Tool GUI”

islogging

Purpose Determine whether video input object is logging
Syntax bool = islogging(obj)
Description bool = islogging(obj) returns true if the video input object obj is

logging data, otherwise false. A video input object is logging if the
value of its Logging property is set to 'on'.

If obj is an array of video input objects, bool is a logical array where
each element in bool represents the corresponding element in obj.
If an object in obj is logging data, islogging sets the corresponding
element in bool to true, otherwise false. If any of the video input
objects in obj is invalid, islogging returns an error.

Exumples Create a video input object.

vid = videoinput('winvideo');

To put the video input object in a logging state, start acquiring data.
The example acquires 50 frames to increase the amount of time that
the object remains in logging state.

set(vid, 'FramesPerTrigger',50)
start(vid)

When the call to the start function returns, and the object is still
acquiring data, use islogging to check the state of the object.

bool
bool

islogging(vid)

Create a second video input object.

vid2 = videoinput('winvideo');

13-31

islogging

Start one of the video input objects again, such as vid, and use
islogging to determine which of the two objects is logging.

start(vid)
bool = islogging([vid vid2])

bool

See Also isrunning | isvalid | videoinput | Logging | LoggingMode

13-32

isrunning

Purpose
Syntax

Description

Examples

See Also

Determine whether video input object is running

bool = isrunning(obj)

bool isrunning(obj) returns true if the video input object obj is
running, otherwise false. A video input object is running if the value of
its Running property is set to 'on'.

If obj is an array of video input objects, bool is a logical array where
each element in bool represents the corresponding element in obj. If an
object in obj is running, the isrunning function sets the corresponding
element in bool to true, otherwise false. If any of the video input
objects in obj is invalid, isrunning returns an error.

Create a video input object, configure a manual trigger, and then start
the object. This puts the object in running state.

vid = videoinput('winvideo');

triggerconfig(vid, 'manual’)
start(vid)

Use isrunning to check the state of the object.

bool = isrunning(vid)
bool
1

Create a second video input object.
vid2 = videoinput('winvideo');

Use isrunning to determine which of the two objects is running.

bool = isrunning([vid vid2])
bool

1 0

islogging | isvalid | start | stop | videoinput | Running

13-33

isvalid

Purpose

Syntax

Description

See Also

13-34

Determine whether image acquisition object is associated with image
acquisition device

bool isvalid(obj)

bool = isvalid(obj) returns true if the video input object obj is
valid, otherwise false. An object is an invalid image acquisition object
if it is no longer associated with any hardware; that is, the object was
deleted using the delete function. If this is the case, obj should be
cleared from the workspace.

If obj is an array of video input objects, bool is a logical array where
each element in bool represents the corresponding element in obj. If
an object in obj is valid, the isvalid function sets the corresponding
element in bool to true, otherwise false.

delete | imaqfind | videoinput

load

Purpose

Syntax

Description

Examples

See Also

Load image acquisition object into MATLAB workspace

load filename
load filename obj1 obj2 ...
S = load(filename,obj1,0bj2,...)

load filename returns all variables from the MAT-file filename to
the MATLAB workspace.

load filename obj1 obj2 ... returns the specified image acquisition
objects (obj1, obj2, etc.) from the MAT-file specified by filename to
the MATLAB workspace.

S = load(filename,obj1,0bj2,...) returns the structure S with
the specified image acquisition objects (obj1, 0bj2, etc.) from the
MAT-file filename. The field names in S match the names of the image
acquisition objects that were retrieved. If no objects are specified, then
all variables existing in the MAT-file are loaded.

Values for read-only properties are restored to their default values
when loaded. For example, the Running property is restored to 'off"'.
Use propinfo to determine if a property is read only.

obj = videoinput('winvideo', 1);
set(obj, 'SelectedSourceName', 'inputil')
save fname obj

load fname

load('fname', 'obj');

imaghelp | propinfo | save

13-35

obj2mfile

Purpose Convert video input objects to MATLAB code

Syntax obj2mfile(obj,filename)
obj2mfile(obj,filename,syntax)
obj2mfile(obj,filename,syntax,mode)
obj2mfile(obj,filename,syntax,mode,reuse)

Description obj2mfile(obj,filename) converts the video input object obj into an
M-file with the name specified by filename. The M-file contains the
MATLAB code required to create the object and set its properties. obj
can be a single video input object or an array of objects.

The obj2mfile function simplifies the process of restoring an object
with specific property settings and can be used to create video input
objects. obj2mfile also creates and configures the video source object
associated with the video input object.

If filename does not specify an extension or if it has an extension
other than the MATLAB M-file extension (.m), obj2mfile appends .m
to the end of filename. To recreate obj, execute the M-file by calling
filename.

If the UserData property of the object is set, or if any of the callback
properties is set to a cell array or to a function handle, obj2mfile writes
the data stored in those properties to a MAT-file. obj2mfile gives the
MAT-file the same name as the M-file, but uses the .mat filename
extension. obj2mfile creates the MAT-file in the same directory as
the M-file.

Note obj2mfile does not restore the values of read-only properties.
For example, if an object is saved with a Logging property set to 'on’,
the object is recreated with a Logging property set to 'off' (the default
value). Use the propinfo function to determine if a property is read
only.

13-36

obj2mfile

obj2mfile(obj,filename,syntax) converts obj to the equivalent
MATLAB code where syntax specifies how obj2mfile assigns values
to properties of the object. syntax can be either of the following text
strings. The default value is enclosed in braces ({}).

String Description

{'set'} obj2mfile uses the set function when specifying
property values.

'dot' obj2mfile uses subscripted assignment (dot
notation) when specifying property values.

obj2mfile(obj,filename,syntax,mode) converts obj to the
equivalent MATLAB code where mode specifies which properties are
configured. mode can be either of the following strings. The default
value is enclosed in braces ({}).

String Description

{'modified'} | Configure writable properties that are not set to
their default values.

'all’ Configure all writable properties. obj2mfile does
not restore the values of read-only properties.

Note that obj2mfile(obj,filename,mode) is a valid syntax. If the
syntax argument is not specified, obj2mfile uses the default value.

obj2mfile(obj,filename,syntax,mode,reuse) converts obj to the
equivalent MATLAB code where reuse specifies whether obj2mfile
searches for a reusable video input object or creates a new one. reuse
can be either of the following strings. The default value is enclosed in
braces ({}).

13-37

obj2mfile

Examples

13-38

String Description

{'reuse'} | Find and modify an existing object, if the existing object
1s associated with the same adaptor and the values of
the DevicelD, VideoFormat, and Tag properties match
the object being created. If no matching object can be
found, obj2mfile creates a new object.

‘create' | Create a new object regardless of whether there are
reusable objects.

Note that obj2mfile (obj,filename,reuse) is a valid syntax. If the
syntax and mode arguments are not specified, obj2mfile uses their
default values.

Create a video input object.
vidobj = videoinput('winvideo', 1, 'RGB24_640x480');
Configure several properties of the video input object.

set(vidobj, 'FramesPerTrigger', 100);
set(vidobj, 'FrameGrabInterval', 2);
set(vidobj, 'Tag', 'CAM1');

Retrieve the selected video source object associated with the video
input object.

src = getselectedsource(vidobj);
Configure the properties of the video source object.

set(src, 'Contrast', 85);
set(src, 'Saturation', 125);

Save the video input object.
obj2mfile(vidobj, 'myvidobj.m', 'set', 'modified');

Delete the object and clear it from the workspace.

obj2mfile
|

delete(vidobj);
clear vidobj;

Execute the M-file to recreate the object. Note that obj2mfile creates
and configures the associated video source object as well.

vidObj = myvidobj;

See Also getselectedsource | imaghelp | propinfo | set | videoinput

13-39

peekdata

Purpose
Syntax

Description

13-40

Most recently acquired image data

data = peekdata(obj,frames)

data peekdata(obj,frames) returns data containing the latest
number of frames specified by frames. If frames is greater than the
number of frames currently acquired, all available frames are returned
with a warning message stating that the requested number of frames
was not available. obj must be a 1-by-1 video input object.

data is returned as an H-by-W-by-B-by-F matrix where

H Image height, as specified in the object’s ROIPosition
property

W Image width, as specified in the object’s ROIPosition
property

B Number of color bands, as specified in the NumberOfBands
property

F Number of frames returned

data is returned to the MATLAB workspace in its native data type
using the color space specified by the ReturnedColorSpace property.

You can use the MATLAB image or imagesc functions to view the
returned data. Use imagmontage to view multiple frames at once.

peekdata is a nonblocking function that immediately returns image
frames and execution control to the MATLAB workspace. Not all
requested data might be returned.

Note peekdata provides a look at the data; it does not remove data
from the memory buffer. The object’s FramesAvailable property value
is not affected by the number of frames returned by peekdata.

peekdata

The behavior of peekdata depends on the settings of the Running and
the Logging properties.

Running | Logging | Object State Result

On Off The object has been started peekdata returns a single
but is waiting for a trigger. frame of data and issues a
(TriggerTypeissetto 'manual' | warning, if you requested more
or 'hardware'). No data has than one frame.
been acquired so none is
available.

On On The object has been started, peekdata returns the n most
a trigger has executed, and recently acquired frames of
the object is actively acquiring | data. The frames are not
data. removed from the buffer.

Off Off The object has stopped running | peekdata can be called once
because it acquired the to return the n most recently
requested number of frames or | acquired frames of data,
you called the stop function. assuming FramesAvailable

is greater than 0. Otherwise,
peekdata returns an error.
The frames returned are not
removed from the memory
buffer.
The number of frames available to peekdata is determined by recalling
the last frame returned by a previous peekdata call, and the number of
frames that were acquired since then.
peekdata can be used only after the start command is issued and
while the object is running. peekdata can also be called once after obj
has stopped running.
See Also getdata | getsnapshot | imaghelp | imagmontage | propinfo | start

13-41

preview

Purpose

Syntax

Description

13-42

Preview of live video data

preview(obj)
preview(obj,himage)
himage = preview(...)

preview(obj) creates a Video Preview window that displays live video
data for video input object obj. The window also displays the timestamp
and video resolution of each frame, and the current status of obj. The
Video Preview window displays the video data at 100% magnification
(one screen pixel represents one image pixel). The size of the preview
image is determined by the value of the video input object ROIPosition
property.

) ¥ideo Preview - winvideo:1

Live video image

Timestump — [151112344 | 352:240 [[atting for START.

Vitleo Resolution Current stotus of

video input ohject

Components of a Video Preview Window

The Video Preview window remains active until it is either stopped
using stoppreview or closed using closepreview. If you delete the
object, by calling delete(obj), the Video Preview window stops
previewing and closes automatically.

preview

Notes

preview(obj,himage) displays live video data for video input object
obj in the image object specified by the handle himage. preview scales
the image data to fill the entire area of the image object but does not
modify the values of any image object properties. Use this syntax to
preview video data in a custom GUI of your own design (see Examples).

himage = preview(...) returns himage, a handle to the image object
containing the previewed data. To obtain a handle to the figure window
containing the image object, use the ancestor function. For more
information about using image objects, see image. See the Custom
Update Function section for more information about the image object
returned.

The behavior of the Video Preview window depends on the video input
object’s current state and trigger configuration.

Object State | Preview Window Behavior

Running=off | Displays a live view of the image being acquired
from the device, for all trigger types. The image is
updated to reflect changes made to configurations of
object properties. (The FrameGrabInterval property
is ignored until a trigger occurs.)

Running=on If TriggerType is set to immediate or manual, the
Video Preview window continues to update the image
displayed.

If TriggerType is set to hardware, the Video Preview
window stops updating the image displayed until a
trigger occurs.

Logging=on Video Preview window might drop some data frames,
but this will not affect the frames logged to memory
or disk.

13-43

preview

Custom
Update
Function

13-44

Note The Image Acquisition Toolbox Preview window and the Preview
window that is built into the Image Acquisition Tool support the display
of up to 16-bit image data. The Preview window was designed to only
show 8-bit data, but many cameras return 10-, 12-, 14-, or 16-bit data.
The Preview window display supports these higher bit-depth cameras.
However, larger bit data is scaled to 8-bit for the purpose of displaying
previewed data. If you need the full resolution of the data, use the
getsnapshot or getdata functions.

preview creates application-defined data for the image object, himage,
assigning it the name 'UpdatePreviewWindowFcn' and setting

its value to an empty array ([]). You can configure the value of

the 'UpdatePreviewWindowFcn' application data and retrieve its
value using the MATLAB setappdata and getappdata functions,
respectively.

The 'UpdatePreviewWindowFcn' will not necessarily be called for
every frame that is acquired. If a new frame is acquired and the
'UpdatePreviewWindowFcn' for the previous frame has not yet
finished executing, no update will be generated for the new frame.
If you need to execute a function for every acquired frame, use the
FramesAcquiredFcn instead.

You can use this function to define custom processing of the previewed
image data. When preview invokes the function handle you specify, it
passes three arguments to your function:

® obj — The video input object being previewed

® event — An event structure containing image frame information.
For more information, see below.

® himage — A handle to the image object that is being updated

preview

Examples

See Also

The event structure contains the following fields:

Field Description

Data Current image frame specified as an H-by-W-by-B
matrix where H and W are the image height and
width, respectively, as specified in the ROIPosition
property, and B is the number of color bands, as
specified in the NumberOfBands property.

Resolution String specifying current image width and height, as
defined by the ROIPosition property.

Status String describing the current acquisition status of the
video input object.

Timestamp String specifying the timestamp associated with the
current image frame.

Create a customized GUI.

figure('Name', 'My Custom Preview Window');
uicontrol('String', 'Close', 'Callback', 'close(gcf)');

Create an image object for previewing.
vidRes = get(obj, 'VideoResolution');
nBands = get(obj, 'NumberOfBands');

hImage = image(zeros(vidRes(2), vidRes(1), nBands));
preview(obj, hImage);

For more information on customized GUIs, see “Previewing Data in
Custom GUIs” on page 2-13.

ancestor | closepreview | image | imaghelp | stoppreview

13-45

propinfo

Purpose Property characteristics for image acquisition objects
Syntax out = propinfo(obj)
out = propinfo(obj,PropertyName)

Description out

propinfo(obj) returns the structure out whose field names

are the names of all the properties supported by obj. obj must be a
1-by-1 image acquisition object. The value of each field is a structure
containing the fields shown below.

Field Name

Description

Type

Data type of the property. Possible values are
'any', 'callback', 'double’', 'string', and
'struct’.

Constraint

Type of constraint on the property value. Possible
values are 'bounded', 'callback', 'enum', and
'none’.

ConstraintValue

List of valid string values or a range of valid
values.

DefaultValue

Default value for the property.

ReadOnly

Condition under which a property is read only:

e 'always' — Property cannot be configured.

® 'whileRunning' — Property cannot be
configured while Running is set to on.

® 'never' — Property can be configured at any
time.

DeviceSpecific

1 if the property is device specific; otherwise, 0
(zero).

out = propinfo(obj,PropertyName) returns the structure out for
the property specified by PropertyName. If PropertyName is a cell

13-46

propinfo

Examples

See Also

array of strings, propinfo returns a structure for each property, stored
in a cell array.

Create the video input object vid.

vid = videoinput('winvideo',1);

Capture all property information for all properties.

out = propinfo(vid);

Access property information for a particular property.

out1 = propinfo(vid, 'LoggingMode');

imaghelp

13-47

save

Purpose

Syntax

Description

Examples

See Also

13-48

Save image acquisition objects to MAT-file

save filename
save filename obj1 obj2 ...
save(filename,obj1,0bj2,...)

save filename saves all variables in the MATLAB workspace to the
MAT-file filename. If filename does not include a file extension, save
appends the .MAT extension to the filename.

save filename obj1 obj2 ... saves the specified image acquisition
objects (obj1, obj2, etc.) to the MAT-file filename

save(filename,obj1,0bj2,...) is the functional form of the
command, where the file name and image acquisition objects must be
specified as text strings. If no objects are specified, then all variables
existing in the MATLAB workspace are saved.

Note that any data associated with the image acquisition object is not
stored in the MAT-file. To save the data, bring it into the MATLAB
workspace (using the getdata function), and then save the variable
to the MAT-file.

To return variables from the MAT-file to the MATLAB workspace, use
the load command. Values for read-only properties are restored to
their default values upon loading. For example, the Running property is
restored to 'off'. Use the propinfo function to determine if a property
is read only.

obj = videoinput('winvideo', 1);

set(obj, 'SelectedSourceName', 'inputil')
save fname obj

set(obj, 'TriggerFcn', {'mycallback', 5});
save('fname1', 'obj')

imaghelp | load | propinfo

set

Purpose

Syntax

Description

Configure or display image acquisition object properties

set(obj)

prop_struct = set(obj)
set(obj,PropertyName)

prop_cell = set(obj,PropertyName)
set(obj,PropertyName,PropertyValue,...)
set(obj,S)

set(obj,PN,PV)

set(obj) displays property names and any enumerated values for all
configurable properties of image acquisition object obj. obj must be
a single image acquisition object.

prop_struct = set(obj) returns the property names and any
enumerated values for all configurable properties of image acquisition
object obj. obj must be a single image acquisition object. The return
value prop_struct is a structure whose field names are the property
names of obj, and whose values are cell arrays of possible property
values or empty cell arrays if the property does not have a finite set
of possible string values.

set(obj,PropertyName) displays the possible values for the specified
property, PropertyName, of image acquisition object obj. obj must be
a single image acquisition object. Use the set(obj) syntax to get a
list of all the properties for a particular image acquisition object that
can be set.

prop_cell = set(obj,PropertyName) returns the possible values

for the specified property, PropertyName, of image acquisition object
obj. obj must be a single image acquisition object. The returned array
prop_cellis a cell array of possible value strings or an empty cell array
if the property does not have a finite set of possible string values.

set(obj,PropertyName,PropertyValue,...) configures the property
specified by the text string PropertyName to the value specified by
PropertyValue for image acquisition object obj. You can specify
multiple property name/property value pairs in a single statement. obj
can be a single image acquisition object or a vector of image acquisition

13-49

set

objects, in which case set configures the property values for all the
image acquisition objects specified.

set(obj,S) configures the properties of obj with the values specified in
S, where S is a structure whose field names are object property names.

set(obj,PN,PV) configures the properties specified in the cell array of
strings, PN, to the corresponding values in the cell array PV, for the
1mage acquisition object obj. PN must be a vector. If obj is an array of
1mage acquisition objects, PV can be an M-by-N cell array, where M

1s equal to the length of the image acquisition object array and N is
equal to the length of PN. In this case, each image acquisition object is
updated with a different set of values for the list of property names
contained in PN.

Note Parameter/value string pairs, structures, and parameter/value
cell array pairs can be used in the same call to set.

Examples These examples illustrate the various ways to use the set function to
set the values of image acquisition object properties.

set(obj, 'FramesPerTrigger', 15, 'LoggingMode', 'disk');
set(obj, {'TimerFcn', 'TimerPeriod'}, {@imaqcallback, 25});

set(obj, 'Name', 'MyObject');
set(obj, 'SelectedSourceName')

See Also get | imagfind | videoinput

13-50

start

Purpose
Syntax

Description

Obtain exclusive use of image acquisition device
start(obj)

start(obj) obtains exclusive use of the image acquisition device
associated with the video input object obj and locks the device’s
configuration. Starting an object is a necessary first step to acquire
image data, but it does not control when data is logged.

obj can either be a 1-by-1 video input object or an array of video input
objects.

Data logging is controlled with the TriggerType property.

Trigger Type | Logging Behavior

"hardware' Data logging occurs when the condition specified
in the object’s TriggerCondition property is met
via the TriggerSource.

"immediate’ Data logging occurs immediately.
'manual’ Data logging occurs when the trigger function is
called.

Use the triggerconfig function to configure the object’s trigger
settings.

When an acquisition is started, obj performs the following operations:
1 Transfers the object’s configuration to the associated hardware.

2 Executes the object’s StartFcn callback.

3 Sets the object’s Running property to 'On'.

If the object’s StartFcn errors, the hardware is never started and the
object’s Running property remains 'Off'.

The start event is recorded in the object’s EventLog property.

13-51

start

Examples

See Also

13-52

An image acquisition object stops running when one of the following
conditions 1s met:

® The stop function is issued.
® The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object.

® A run-time error occurs.

® The object’s Timeout value is reached.

The start function can be called by a video input object’s event callback.

obj.StopFcn = {'start'};

imaqgfind | imaghelp | propinfo | stop | trigger | triggerconfig

stop

Purpose
Syntax

Description

Examples

See Also

Stop video input object
stop(obj)

stop(obj) halts an acquisition associated with the video input object
obj. obj can be either a single video input object or an array of video
input objects.

The stop function

® Sets the object’s Running property to 'Off'
e Sets the object’s Logging property to 'Off', if needed
* Executes the object’s StopFcn callback

An image acquisition object can also stop running under one of the
following conditions:

® The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object.

® A run-time error occurs.

® The object’s Timeout value is reached.

The stop event is recorded in the object’s EventLog property.

The stop function can be called by a video input object’s event callback.

obj.TimerFcn = {'stop'};

imaqgfind | start | trigger | propinfo | videoinput

13-53

stoppreview

Purpose Stop previewing video data
Syntax stoppreview(obj)
Description stoppreview(obj) stops the previewing of video data from image

acquisition object obj.

To restart previewing, call preview again.

Examples Create a video input object and open a Video Preview window.

vid = videoinput('winvideo',1);
preview(vid)

Stop previewing video data.

stoppreview(vid);

Restart previewing.

preview(vid)

See Also closepreview | preview

13-54

trigger

Purpose
Syntax

Description

Examples

See Also

Initiate data logging
trigger(obj)

trigger(obj) initiates data logging for the video input object obj. obj
can be either a single video input object or an array of video input
objects.

The trigger function

* Executes the object’s TriggerFcn callback

® Records the absolute time of the first trigger event in the object’s
InitialTriggerTime property

¢ Configures the object’s Logging property to 'On'

obj must be running and its TriggerType property must be set to
‘manual’'. To start an object running, use the start function.

The trigger event is recorded in the object’s EventLog property.

The trigger function can be called by a video input object’s event
callback.

obj.StartFcn = @trigger;

imaqfind | start | stop | videoinput

13-55

triggerconfig

Purpose Configure video input object trigger properties

Syntax triggerconfig(obj,type)
triggerconfig(obj,type,condition)
triggerconfig(obj,type,condition,source)
config = triggerconfig(obj)
triggerconfig(obj,config)

Description triggerconfig(obj,type) configures the value of the TriggerType
property of the video input object obj to the value specified by
the text string type. For a list of valid TriggerType values, use
triggerinfo(obj). type must specify a unique trigger configuration.

obj can be either a single video input object or an array of video input
objects. If an error occurs, any video input objects in the array that have
already been configured are returned to their original configurations.

triggerconfig(obj,type,condition) configures the values of
the TriggerType and TriggerCondition properties of the video
input object obj to the values specified by the text strings type and
condition. For a list of valid TriggerType and TriggerCondition
values, use triggerinfo(obj). type and condition must specify a
unique trigger configuration.

triggerconfig(obj,type,condition,source) configures the values of
the TriggerType, TriggerCondition, and TriggerSource properties
of the video input object obj to the values specified by the text

strings type, condition, and source, respectively. For a list of valid
TriggerType, TriggerCondition, and TriggerSource values, use
triggerinfo(obj).

config = triggerconfig(obj) returns a MATLAB structure config
containing the object’s current trigger configuration. obj must be a
1-by-1 video input object. The field names of config are TriggerType,
TriggerCondition, and TriggerSource. Each field contains the
current value of the object’s property.

triggerconfig(obj,config) configures the TriggerType,
TriggerCondition, and TriggerSource property values for video

13-56

triggerconfig

Examples

input object obj using config, a MATLAB structure with field names
TriggerType, TriggerCondition, and TriggerSource, each containing
the desired property value.

Example 1

Construct a video input object.
vid = videoinput('winvideo', 1);
Configure trigger properties for the object.
triggerconfig(vid, 'manual')
Trigger the acquisition.

start(obj)
trigger(obj)

Remove video input object from memory.

delete(vid);
Example 2

This example uses a structure returned from triggerinfo to configure
trigger parameters.

Create a video input object.
vid = videoinput('winvideo', 1);

Use triggerinfo to get all valid configurations for the trigger
properties for the object.

config = triggerinfo(vid);
Pass one of the configurations to the triggerconfig function.
triggerconfig(vid,config(2));

Remove video input object from memory.

13-57

triggerconfig

delete(vid);

See Also imaghelp | trigger | triggerinfo | videoinput

13-58

triggerinfo

Purpose

Syntax

Description

Examples

Provide information about available trigger configurations

triggerinfo(obj)

triggerinfo(obj,type)
config = triggerinfo(...)

triggerinfo(obj) displays all available trigger configurations for the
video input object obj. obj can only be a 1-by-1 video input object.

triggerinfo(obj,type) displays the available trigger configurations
for the specified TriggerType, type, for the video input object obj. To
get a list of valid type values for a particular image acquisition object,
use triggerinfo(obj).

config = triggerinfo(...) returns config, an array of MATLAB
structures, containing all the valid trigger configurations for the video
input object obj. Each structure in the array contains these fields:

Field Description

TriggerType Name of the trigger type

TriggerCondition | Condition that must be met before executing
a trigger

TriggerSource Hardware source used for triggering

You can pass one of the structures in config to the triggerconfig
function to specify the trigger configuration.

This example illustrates how to use the triggerinfo function to
retrieve valid configurations of the TriggerType, TriggerSource, and
TriggerCondition properties.

1 Create a video input object.

vid = videoinput('winvideo');

13-59

triggerinfo

2 Get information about the available trigger configurations for this
object.

config = triggerinfo(vid)

config
1x2 struct array with fields:
TriggerType

TriggerCondition
TriggerSource

3 View one of the trigger configurations returned by triggerinfo.
config(1)
ans =
TriggerType: 'immediate'

TriggerCondition: 'none’
TriggerSource: 'none'’

See Also imaghelp | triggerconfig

13-60

videoinput

Purpose

Syntax

Description

Create video input object

obj = videoinput (adaptorname)

obj = videoinput(adaptorname,devicelID)

obj = videoinput(adaptorname,devicelD,format)

obj = videoinput(adaptorname,devicelD, format,P1,v1,...)

obj = videoinput (adaptorname) constructs the video input object
obj. A video input object represents the connection between MATLAB
and a particular image acquisition device. adaptorname is a text string
that specifies the name of the adaptor used to communicate with

the device. Use the imaghwinfo function to determine the adaptors
available on your system.

obj = videoinput(adaptorname,devicelD) constructs a video input
object obj, where devicelD is a numeric scalar value that identifies a
particular device available through the specified adaptor, adaptorname.
Use the imaghwinfo (adaptorname) syntax to determine the devices
available through the specified adaptor. If devicelID is not specified,
the first available device ID is used. As a convenience, a device’s name
can be used in place of the deviceID. If multiple devices have the same
name, the first available device is used.

obj = videoinput(adaptorname,devicelID,format) constructs a
video input object, where format is a text string that specifies a
particular video format supported by the device or the full path of a
device configuration file (also known as a camera file).

To get a list of the formats supported by a particular device, view the
DeviceInfo structure for the device that is returned by the imaghwinfo
function. Each DevicelInfo structure contains a SupportedFormats
field. If format is not specified, the device’s default format is used.

When the video input object is created, its VideoFormat field contains
the format name or device configuration file that you specify.

obj = videoinput(adaptorname,devicelD,format,P1,vV1,...) creates
a video input object obj with the specified property values. If an invalid
property name or property value is specified, the object is not created.

13-61

videoinput

The property name and property value pairs can be in any format
supported by the set function, i.e., parameter/value string pairs,
structures, or parameter/value cell array pairs.

To view a complete listing of video input object functions and properties,
use the imaghelp function.

imaqghelp videoinput

Tips The toolbox chooses the first available video source object as the
selected source and specifies this video source object’s name in the
object’s SelectedSourceName property. Use getselectedsource(obj)
to access the video source object that 1s used for acquisition.

Examples Construct a video input object.
obj = videoinput('matrox', 1);
Select the source to use for acquisition.
set(obj, 'SelectedSourceName', 'inputl')

View the properties for the selected video source object.

src_obj = getselectedsource(obj);
get(src_obj)

Preview a stream of image frames.
preview(obj);
Acquire and display a single image frame.

frame = getsnapshot(obj);
image(frame);

Remove video input object from memory.

delete(obj);

13-62

videoinput

See Also delete | imaqfind | isvalid | preview

13-63

wait

Purpose

Syntax

Description

13-64

Wait until image acquisition object stops running or logging

wait(obj)
wait(obj,waittime)
wait(obj,waittime,state)

wait (obj) blocks the MATLAB command line until the video input
object obj stops running (Running = 'off'). obj can be either a single
video input object or an array of video input objects. When obj is

an array of objects, the wait function waits until all objects in the
array stop running. If obj is not running or is an invalid object, wait
returns immediately. The wait function can be useful when you want to
guarantee that data is acquired before another task is performed.

wait (obj,waittime) blocks the MATLAB command line until the video
input object or array of objects obj stops running or until waittime
seconds have expired, whichever comes first. By default, waittime is
set to the value of the object’s Timeout property.

wait (obj,waittime,state) blocks the MATLAB command line until
the video input object or array of objects obj stops running or logging,
or until waittime seconds have expired, whichever comes first. state
can be either of the following text strings. The default value is enclosed
in braces ({}).

State Description

{'running'} | Blocks until the value of the object’s Running property
is 'off'.

'logging' Blocks until the value of the object’s Logging property
is 'off'.

Note The video input object’s stop event callback function (StopFcn)
might not be called before this function returns.

wait

Examples

See Also

An image acquisition object stops running or logging when one of the
following conditions is met:

® The stop function is issued.

® The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object.

® A run-time error occurs.
® The object’s Timeout value is reached.

Create a video input object.

vid = videoinput('winvideo');

Specify an acquisition that should take several seconds. The example
sets the FramesPerTrigger property to 300.

vid.FramesPerTrigger = 300;

Start the object. Because it is configured with an immediate trigger (the
default), acquisition begins when the object is started. The example
calls the wait function after calling the start function. Notice how wait
blocks the MATLAB command line until the acquisition is complete.

start(vid), wait(vid);

imaghelp | start | stop | trigger | propinfo

13-65

wait

13-66

Property Reference

This chapter contains brief descriptions of all the properties of the video input
object and the properties of the video source object that are common to all
video source objects. Video source objects can also support device-specific
properties that vary depending on the image acquisition hardware. To get
help on these device-specific properties, use the imaghelp function, specifying
the video source object as an argument.

Video Input Objects (p. 14-2) Image acquisition object properties,
arranged by category

Video Source Objects (p. 14-6) Video source object properties,
arranged alphabetically

14 Property Reference

14-2

Video Input Objects

General (p. 14-2)

Callback (p. 14-3)
Triggering (p. 14-4)
Acquisition Source (p. 14-5)

General

BayerSensorAlignment
DeviceID

DiskLogger
DiskLoggerFrameCount

EventLog

FrameGrabInterval
FramesAcquired
FramesAvailable

FramesPerTrigger

Logging

LoggingMode

General image acquisition properties
Properties related to callback events
Properties related to triggering

Properties related to video
acquisition source

Specify sensor alignment for Bayer
demosaicing

Identify image acquisition device
represented by video input object

Specify MATLAB AVI file object
used to log data

Specify number of frames written to
disk

Store information about events

Specify how often to acquire frame
from video stream

Indicate total number of frames
acquired

Indicate number of frames available
in memory buffer

Specify number of frames to acquire
per trigger using selected video
source

Indicate whether object is currently
logging data

Specify destination for acquired data

Video Input Objects

Name
NumberOfBands
Previewing

ReturnedColorSpace

ROIPosition
Running

Tag

Timeout
Type
UserData
VideoFormat

VideoResolution

Callback

ErrorFcn

FramesAcquiredFcn

Specify name of image acquisition
object

Indicate number of color bands in
data to be acquired

Indicate whether object is currently
previewing data in separate window

Specify color space used in MATLAB
Specify region-of-interest (ROI)
window

Indicate whether video input object
is ready to acquire data

Specify descriptive text to associate
with image acquisition object
Specify how long to wait for image
data

Identify type of image acquisition
object

Store data to associate with image
acquisition object

Specify video format or name of
device configuration file

Indicate width and height of
incoming video stream

Specify callback function to execute
when run-time error occurs

Specify MATLAB file executed when
specified number of frames have
been acquired

14-3

14 Property Reference

14-4

FramesAcquiredFcnCount

StartFcn
StopFcn

TimerFcn

TimerPeriod

TriggerFcn

Triggering

InitialTriggerTime

TriggerCondition

TriggerFrameDelay

TriggerRepeat
TriggersExecuted
TriggerSource

TriggerType

Specify number of frames that must
be acquired before frames acquired
event is generated

Specify MATLAB file executed when
start event occurs

Specify MATLAB file executed when
stop event occurs

Specify MATLAB file callback
function to execute when timer event
occurs

Specify number of seconds between
timer events

Specify MATLAB file callback
function to execute when trigger
event occurs

Record absolute time of first trigger

Indicate required condition before
trigger event occurs

Specify number of frames to skip
before acquiring frames after trigger
occurs

Specify number of additional times
to execute trigger

Indicate total number of executed
triggers

Indicate hardware source to monitor
for trigger conditions

Indicate type of trigger used by video
input object

Video Input Objects

Acquisition Source

SelectedSourceName Specify name of currently selected
video source

Source Indicate video source objects
associated with video input object

14-5

14 Property Reference

Video Source Objects

Video input objects create one or more video source objects that represent
the image acquisition data sources. The following table lists the properties
common to all video source objects.

Note A video source object can support additional, device-specific properties.
These properties vary, depending on the image acquisition hardware. To get

information about these properties, use the imaghelp function, specifying the
video source object as an argument.

Parent Identify video input object that is
parent of video source object

Selected Indicate whether video source object
will be used for acquisition

Tag Specify descriptive text to associate
with image acquisition object

Type Identify type of image acquisition
object

14-6

Properties — Alphabetical
List

BayerSensorAlignment

15-2

Purpose

Description

Specify sensor alignment for Bayer demosaicing

If the ReturnedColorSpace property is set to 'bayer', then the Image
Acquisition Toolbox software will demosaic Bayer patterns returned by
the hardware. This color space setting will interpolate Bayer pattern
encoded images into standard RGB images. If your camera uses Bayer
filtering, the toolbox supports the Bayer pattern and can return color if
desired.

In order to perform the demosaicing, the toolbox needs to know the pixel
alignment of the sensor. This is the order of the red, green, and blue
sensors and is normally specified by describing the four pixels in the
upper-left corner of the sensor. It is the band sensitivity alignment of
the pixels as interpreted by the camera’s internal hardware. You must
get this information from the camera’s documentation and then specify
the value for the alignment, as described in the following table.

There are four possible sensor alignments.

Value Description

'gbrg' The 2-by-2 sensor alignment is
green blue
red green

'grbg' The 2-by-2 sensor alignment is
green red
blue green

"bggr' The 2-by-2 sensor alignment is
blue green
green red

'rggb’ The 2-by-2 sensor alignment is

red green
green blue

BayerSensorAlignment

Characteristics

See Also

The value of this property is only used if the ReturnedColorSpace
property is set to 'bayer'.

Access Read/write

Data type String

Values [{'grbg'} | 'gbrg' | 'rggb'| 'bggr']
Functions

getdata, getsnapshot, peekdata, videoinput

Properties

ReturnedColorSpace, VideoFormat

15-3

DevicelD

Purpose

Description

Characteristics

Examples

15-4

Identify image acquisition device represented by video input object

The DevicelD property identifies the device represented by the video
input object.

A device ID is a number, assigned by an adaptor, that uniquely
identifies an image acquisition device. The adaptor assigns the first
device it detects the identifier 1, the second device it detects the
identifier 2, and so on.

You must specify the device ID as an argument to the videoinput
function when you create a video input object. The object stores
the value in the DevicelD property and also uses the value when
constructing the default value of the Name property.

To get a list of the IDs of the devices connected to your system, use
the imaghwinfo function, specifying the name of a particular adaptor
as an argument.

Access Read only

Data type double

Values Any nonnegative integer

Use the imaghwinfo function to determine which adaptors are
connected to devices on your system.

imaghwinfo
ans =

InstalledAdaptors: {'matrox' ‘'winvideo'}
MATLABVersion: '7.4 (R2007a)'
ToolboxName: 'Image Acquisition Toolbox'
ToolboxVersion: '2.1 (R2007a)'

DevicelD

See Also

Use the imaghwinfo function again, specifying the name of the adaptor,
to find out how many devices are available through that adaptor. The
imaghwinfo function returns the device IDs for all the devices in the

DevicelIds field.

info = imaghwinfo('winvideo')

info

AdaptorDl1lName:
AdaptorDllVersion:
AdaptorName:
DevicelDs:
DeviceInfo:

Functions

imaghwinfo, videoinput

Properties

Name

[1x73 char]
‘2.0 (R2006a+)'
‘winvideo'
{11}

[1x1 struct]

15-5

DiskLogger

Purpose Specify MATLAB AVI file object used to log data

Description The DiskLogger property specifies the AVI file object used to log data
when the LoggingMode property is set to 'disk' or 'disk&memory"'.

A MATLAB AVI file object specifies the name and other characteristics
of an AVI file. For example, you can use AVI file object properties to
specify the codec used for data compression and the desired quality of
the output. For complete information about the AVI file object and its
properties, see the avifile documentation.

Note Do not use the variable returned by the avifile function to
perform any operation on an AVI file object while it is being used by a
video input object for data logging. For example, do not change any of
the AVI file object properties, add frames, or close the object. Your
changes could conflict with the video input object.

When the video input object finishes logging data to disk, the AVI file
object remains open. The video input object does not open or close an
AVTI file object used for logging. The video input object, however, does
update the Width, Height, and TotalFrames fields in the AVI file object
to reflect the current acquisition settings.

After Logging and Running are off, it is possible that the DiskLogger
might still be writing data to disk. When the DiskLogger finishes
writing data to disk, the value of the DiskLoggerFrameCount property
should equal the value of the FramesAcquired property. Do not close or
modify the DiskLogger until this condition is met.

Characteristics 5ccess Read only while running
Data type AVI file object
Values The default value is [].

15-6

DiskLogger

Examples

See Also

Create and configure an AVI file object.

file = avifile('logfile.avi');
file.Quality = 50;

Create and configure a video input object.

vid = videoinput('winvideo', 1);
vid.LoggingMode = 'disk&memory';
vid.DiskLogger = file;

Start logging data to disk.

start(vid)

To ensure that the logged data is written to the disk file, close the AVI
file. As an argument to the close function, specify the value of the
video input object DiskLogger property, vid.DiskLogger, to reference
the AVI file object, not the original variable, file, returned by the
avifile function.

file = close(vid.DiskLogger);

Delete the image acquisition object from memory when it is no longer
needed.

delete(vid)
clear vid

Functions

videoinput

Properties

DiskLoggerFrameCount, Logging, LoggingMode

15-7

DiskLoggerFrameCount

15-8

Purpose

Description

Characteristics

See Also

Specify number of frames written to disk

The DiskLoggerFrameCount property indicates the current number of
frames written to disk by the DiskLogger. This value is only updated
when the LoggingMode property is set to 'disk' or 'disk&memory'.

After Logging and Running are off, it is possible that the DiskLogger
might still be writing data to disk. When the DiskLogger finishes
writing data to disk, the value of the DiskLoggerFrameCount property
should equal the value of the FramesAcquired property. Do not close or
modify the DiskLogger until this condition is met.

Access Read only

Data type double

Values Any nonnegative integer
Functions
videoinput
Properties

DiskLogger, FramesAcquired, Logging, Running

ErrorFcn

Purpose

Description

Specify callback function to execute when run-time error occurs

The ErrorFcn property specifies the function to execute when an error
event occurs. A run-time error event is generated immediately after a
run-time error occurs.

Run-time errors include hardware errors and timeouts. Run-time
errors do not include configuration errors such as setting an invalid
property value.

Run-time error event information is stored in the EventLog property.
You can retrieve any error message with the Data.Message field of
EventLog.

Note Callbacks, including ErrorFcn, are executed only when the video
object is in a running state. If you need to use the ErrorFcn callback for
error handling during previewing, you must start the video object before
previewing. To do that without logging data, use a manual trigger.

Characteristics 5cceqs Read only while running

See Also

Data type String, function handle, or cell array

Values imagcallback is the default callback function.

Properties

EventLog, Timeout

15-9

Eventlog

Purpose

Description

15-10

Store information about events

The EventLog property is an array of structures that stores information
about events. Each structure in the array represents one event. Events
are recorded in the order in which they occur. The first EventLog
structure reflects the first event recorded, the second EventlLog
structure reflects the second event recorded, and so on.

Each event log structure contains two fields: Type and Data.

The Type field stores a character array that identifies the event type.
The Image Acquisition Toolbox software defines many different event
types, listed in this table. Note that not all event types are logged.

Included in
Event Type Description Log

Error Run-time error occurred. Run-time | Yes
errors include timeouts and
hardware errors.

Frames Acquired | The number of frames specified No
in the FramesAcquiredFcnCount
property has been acquired.

Start Object was started by calling the | Yes
start function.

Stop Object stopped executing. Yes

Timer Timer expired. No

Trigger Trigger executed. Yes

The Data field stores information associated with the specific event. For
example, all events return the absolute time the event occurred in the
AbsTime field. Other event-specific fields are included in Data. For
more information, see “Retrieving Event Information” on page 7-7.

EventLog can store a maximum of 1000 events. If this value is exceeded,
then the most recent 1000 events are stored.

Eventlog

Characteristics 5o Fizzdl only

Data type Structure array
Values Default is empty structure array.
Exumples Create a video input object.
vid = videoinput('winvideo');
Start the object.
start(vid)
View the event log to see which events occurred.
elog = vid.EventLog;
{elog.Type}
ans =
'Start’ 'Trigger' 'Stop’
View the data associated with a trigger event.
elog(2).Data
ans =
AbsTime: [2003 2 11 17 22 18.9740]
FrameMemoryLimit: 12288000
FrameMemoryUsed: 0
FrameNumber: O
RelativeFrame: 0
TriggerIndex: 1
See Also Properties
Logging

15-11

FrameGrablinterval

Purpose

Description

15-12

Specify how often to acquire frame from video stream

The FrameGrabInterval property specifies how often the video input
object acquires a frame from the video stream. By default, objects
acquire every frame in the video stream, but you can use this property
to specify other acquisition intervals.

Note Do not confuse the frame grab interval with the frame rate. The
frame rate describes the rate at which an image acquisition device
provides frames, typically measured in seconds, such as 30 frames per
second. The frame grab interval is measured in frames, not seconds. If
a particular device’s frame rate is configurable, the video source object
might include the frame rate as a device-specific property.

For example, when you specify a FrameGrabInterval value of 3, the
object acquires every third frame from the video stream, as illustrated
in this figure. The object acquires the first frame in the video stream
before applying the FrameGrabInterval.

Trigger
execufes; doto Aequisitian
logging begins. stops.
i— FramesPerlrigger= — s
¥
F1 [F2 [F3 [F4 [F5 ([F& [F7 [F8 [F§ [FI0[F11T [F2]F3 'ﬁ'"ida:ustreum...>

" I PAN ,

4 Y L'
FrameGrablnterval = 3

Dbject aaquires the first frame and
then applies FrameGrablnferval

You specify the source of the video stream in the SelectedSourceName
property.

FrameGrablinterval

Characteristics Access Read only while running
Data type double
Values Any positive integer. The default value i1s 1 (acquire
every frame).

See Also Functions

videoinput

Properties

SelectedSourceName

15-13

FramesAcquired

Purpose

Description

Characteristics

See Also

15-14

Indicate total number of frames acquired

The FramesAcquired property indicates the total number of frames

that the object has acquired, regardless of how many frames have been
extracted from the memory buffer. The video input object continuously
updates the value of the FramesAcquired property as it acquires frames.

Note When you issue a start command, the video input object resets
the value of the FramesAcquired property to 0 (zero) and flushes the
buffer.

To find out how many frames are available in the memory buffer, use
the FramesAvailable property.

Access Read only
Data type double
Values Any nonnegative integer. The default value is 0
(zero).
Functions
start
Properties

FramesAvailable, FramesAcquiredFcn, FramesAcquiredFcnCount

FramesAcquiredFcn

Purpose

Description

Characteristics

See Also

Specify MATLAB file executed when specified number of frames have
been acquired

The FramesAcquiredFcn specifies the MATLAB file function to execute
every time a predefined number of frames have been acquired.

A frames acquired event is generated immediately after the number of
frames specified by the FramesAcquiredFcnCount property is acquired
from the selected video source. This event executes the MATLAB file
specified for FramesAcquiredFcn.

Use the FramesAcquiredFcn callback if you must access each frame
that is acquired. If you do not have this requirement, you might want to
use the TimerFcn property.

Frames acquired event information is not stored in the EventLog
property.

Access Read/write

Data type String, function handle, or cell array

Values The default value is an empty matrix ([]).
Properties

EventLog, FramesAcquiredFcnCount, TimerFcn

15-15

FramesAcquiredFcnCount

Purpose

Description

Characteristics

See Also

15-16

Specify number of frames that must be acquired before frames acquired
event is generated

The FramesAcquiredFcnCount property specifies the number of frames
to acquire from the selected video source before a frames acquired
event is generated.

The object generates a frames acquired event immediately after the
number of frames specified by FramesAcquiredFcnCount is acquired
from the selected video source.

Access Read only while running

Data type double

Values Any positive integer. The default value is 0 (zero).
Properties
FramesAcquiredFcn

FramesAvailable

Purpose

Description

Characteristics

See Also

Indicate number of frames available in memory buffer

The FramesAvailable property indicates the total number of frames
that are available in the memory buffer. When you extract data, the
object reduces the value of the FramesAvailable property by the

appropriate number of frames. You use the getdata function to extract

data and move it into the MATLAB workspace.

Note When you issue a start command, the video input object resets
the value of the FramesAvailable property to O (zero) and flushes the

buffer.

To view the total number of frames that have been acquired since the
last start command, use the FramesAcquired property.

Access Read only

Data type double

Values Any nonnegative integer. The default value is 0 (zero).
Functions

getdata, start

Properties

FramesAcquired

15-17

FramesPerTrigger

Purpose

Description

Characteristics

See Also

15-18

Specify number of frames to acquire per trigger using selected video

source

The FramesPerTrigger property specifies the number of frames the
video input object acquires each time it executes a trigger using the
selected video source.

When the value of the FramesPerTrigger property is set to Inf, the
object keeps acquiring frames until an error occurs or you issue a stop

command.

Note When the FramesPerTrigger property is set to Inf, the object
ignores the value of the TriggerRepeat property.

Access

Read only while running

Data type

double

Values

Any positive integer. The default value is 10.

Functions

stop

Properties

TriggerRepeat

InitialTriggerTime

Purpose Record absolute time of first trigger

Description The InitialTriggerTime property records the absolute time of the first
trigger. The absolute time is recorded as a MATLAB clock vector.

For all trigger types, InitialTriggerTime records the time when the
Logging property is set to 'on'.

To find the time when a subsequent trigger executed, view the
Data.AbsTime field of the EventLog property for the particular trigger.

Characteristics A coqs el ol
Data type Six-element vector of doubles (MATLAB clock vector)
Values The default value is [].

Examples Create an image acquisition object, vid, for a USB-based webcam.

vid = videoinput('winvideo',1);
Start the object. Because the TriggerType property is set to
"immediate' by default, the trigger executes immediately. The object
records the time of the initial trigger.

start(vid)

abstime = vid.InitialTriggerTime

abstime
1.0e+003 *

1.9990 0.0020 0.0190 0.0130 0.0260 0.0208

Convert the clock vector into an integer form for display.

t = fix(abstime);

15-19

InitialTriggerTime

sprintf('%d:%d:%d', t(4),t(5),t(6))
ans =

13:26:20

See Also Functions
clock, getdata

Properties

EventLog, Logging, TriggerType

15-20

Logging

Purpose

Description

Characteristics

See Also

Indicate whether object is currently logging data

The Logging property indicates whether the video input object is
currently logging data.

When a trigger occurs, the object sets the Logging property to 'on' and
logs data to memory, a disk file, or both, depending on the value of
the LoggingMode property.

The object sets the Logging property to 'off' when it acquires the
requested number of frames, an error occurs, or you issue a stop
command.

To acquire data when the object is running but not logging, use the
peekdata function. Note, however, that the peekdata function does not
guarantee that all the requested image data is returned. To acquire all
the data without gaps, you must have the object log the data to memory
or to a disk file.

Default value is enclosed in braces ({}).

Access Read only

Data type String

Values [{'off'} | 'on']
Functions

getdata, islogging, peekdata, stop, trigger

Properties

LoggingMode, Running

15-21

LoggingMode

Purpose Specify destination for acquired data
Description The LoggingMode property specifies where you want the video input
object to store the acquired data. You can specify any of the following
values:
Value Description
'disk’ Log acquired data to a disk file.
'disk&memory Log acquired data to both a disk file and to a
memory buffer.
"memory ' Log acquired data to a memory buffer.
If you select 'disk' or 'disk&memory', you must specify the AVI
file object used to access the disk file as the value of the DiskLogger
property.
Note When logging data to memory, you must extract the acquired
data in a timely manner with the getdata function to avoid using up all
the memory that is available on your system. Use imagmem to specify
the amount of memory available for image frames.
Characteristics 5ccess Read only while running
Data type String
Values ['disk' | 'disk&memory' | {'memory'}]
Default value is enclosed in braces ({}).
See Also Functions
getdata

15-22

LoggingMode

Properties

DiskLogger, Logging

15-23

Name

Purpose Specify name of image acquisition object
Description The Name property specifies a descriptive name for the image acquisition
object.
Characteristics Access Read/write
Data type | String
Values Any text string. The toolbox creates the default name by
combining the values of the VideoFormat and DeviceID
properties with the adaptor name in this format:
VideoFormat + '-' + adaptor name + '-' + DevicelID
Examples Create an image acquisition object.

vid = videoinput('winvideo');

Retrieve the value of the Name property using the get function.

get(vid, 'Name')

ans =

RGB555_128x96-winvideo-1

See Also Functions

videoinput

Properties

DevicelD, VideoFormat

15-24

NumberOfBands
|

Purpose Indicate number of color bands in data to be acquired
Description The NumberOfBands property indicates the number of color bands in the
data to be acquired. The toolbox defines band as the third dimension in

a 3-D array, as shown in this figure.

w‘*

| - Band 3

alumn
Row ol fandl

- Band 1

The value of the NumberOfBands property indicates the number of color
bands in the data returned by getsnapshot, getdata, and peekdata.

Characteristics A ceoqs Readionly

Data type double

Values Any positive integer. The default value is defined at
object creation time based on the video format.

Examples Create an image acquisition object.

vid = videoinput('winvideo');

Retrieve the value of the NumberOfBands property using the get
function.

get(vid, 'NumberOfBands')

ans =

15-25

NumberOfBands

If you retrieve the value of the VideoFormat property, you can see that
the video data is in RGB format.

get(vid, 'VideoFormat')
ans =

RGB24_320x240

See Also Functions
getdata, getsnapshot, peekdata

15-26

Parent

Purpose

Description

Characteristics

See Also

Identify video input object that is parent of video source object
The Parent property identifies the video input object that is the parent
of a video source object.

The parent of a video source object is defined as the video input object
owning the video source object.

Access Read only

Data type | Video input object

Values Defined at object creation time
Functions
videoinput

15-27

Previewing

Purpose Indicate whether object is currently previewing data in separate window

Description The Previewing property indicates whether the object is currently
previewing data in a separate window.

The object sets the Previewing property to 'on' when you call the
preview function.

The object sets the Previewing property to 'off' when you close the
preview window using the closepreview function or by clicking the
Close button in the preview window title bar.

Characteristics Default value is enclosed in braces ({}).

Access Read only

Data type String

Values [{'off'} | 'on']
See Also Functions

closepreview, preview

15-28

ReturnedColorSpace

Purpose Specify color space used in MATLAB

Description The ReturnedColorSpace property specifies the color space you
want the toolbox to use when it returns image data to the MATLAB
workspace. This is only relevant when you are accessing acquired image
data with the getsnapshot, getdata, and peekdata functions.

This property can have any of the following values:

Value Description

‘grayscale' | MATLAB grayscale color space.

'rgb' MATLAB RGB color space.
'YCbhCr' MATLAB YCbCr color space. This is often referred
to as YUV.
'bayer' Convert grayscale Bayer color patterns to RGB images.

The bayer color space option is only available if your
camera’s default returned color space is grayscale.

To use the BayerSensorAlignment property, you must
set the ReturnedColorSpace property to bayer.

Characteristics 5o P

Data type String

Values Defined at object creation time and depends on the
video format selected

See Also Functions

getdata, getsnapshot, peekdata, videoinput

Properties

BayerSensorAlignment, VideoFormat

15-29

ROIPosition

Purpose Specify region-of-interest (ROI) window

Description The ROIPosition property specifies the region-of-interest acquisition
window. The ROI window defines the actual size of the frame logged
by the toolbox, measured with respect to the top left corner of an image
frame.

ROIPosition is specified as a 1-by-4 element vector

[XOffset YOffset Width Height]

where

X0ffset Position of the upper left corner of the ROI, measured
in pixels.

YOffset Position of the upper left corner of the ROI, measured
in rows.

Width Width of the ROI, measured in pixels. The sum of
XO0ffset and Width cannot exceed the width specified
in VideoResolution.

Height Height of the ROI, measured in rows. The sum of
YOffset and Height cannot exceed the height specified
in VideoResolution.

15-30

ROIPosition

|-l— With —l-|

XOffset, YOffset

Video frume
~—Resolution 240x320

ROI
|q— [50, 50,120,100]

Note The Width does not include both end points as well as the width
between the pixels. It includes one end point, plus the width between
pixels. For example, if you want to capture an ROI of pixels 20 through
30, including both end pixels 20 and 30, set an XOffset of 20 and a
Width of 10. The same rule applies to height.

In the figure shown above, the width of the captured ROI contains
pixels 50 through 170, including both end points, because the XOffset
is set to 50 and the Width is set to 120.

Characteristics Access Read only while running

Data type 1-by-4 element vector of doubles

Values Defaultis [0 0 width height] where width and
height are determined by VideoResolution.

See Also Properties

VideoResolution

15-31

Purpose Indicate whether video input object is ready to acquire data

Description The Running property indicates if the video input object is ready to
acquire data.

Along with the Logging property, Running reflects the state of a video
input object. The Running property indicates that the object is ready
to acquire data, while the Logging property indicates that the object is
acquiring data.

The object sets the Running property to 'on' when you issue the start
command. When Running is 'on', you can acquire data from a video
source.

The object sets the Running property to 'off' when any of the following
conditions is met:

¢ The specified number of frames has been acquired.

® A run-time error occurs.

® You issue the stop command.

When Running is 'off', you cannot acquire image data. However, you
can acquire one image frame with the getsnapshot function.

Characteristics Default value is enclosed in braces ({}).

Access Read only

Data type String

Values [{'off'} | 'on']
See Also Properties

getsnapshot, start, stop

Properties

Logging

15-32

Selected

Purpose

Description

Characteristics

Examples

Indicate whether video source object will be used for acquisition

The Selected property indicates if the video source object will be used
for acquisition. You select a video source object by specifying its name
as the value of the video input object’s SelectedSourceName property.
The video input object Source property is an array of all the video
source objects associated with the video input object.

If Selected is 'on', the video source object is selected. If the value is
'off', the video source object is not selected.

A video source is defined to be a collection of one or more physical data
sources that are treated as a single entity. For example, hardware
supporting multiple RGB sources, each of which is made up of three
physical connections (red, green, and blue), is treated as a single video
source object.

Default value is enclosed in braces ({}).

Access Read only

Data type String

Values [{'off'} | 'on']

Create an image acquisition object.

vid = videoinput('winvideo');
Determine the currently selected video source object.
vid.SelectedSourceName
ans =
input1

Retrieve the currently selected video source object.

15-33

Selected

src = getselectedsource(vid);
View its Name and Selected properties.

src.SourceName

ans =

input1

src.Selected

ans =

on

See Also Functions

getselectedsource

Properties

SelectedSourceName

15-34

SelectedSourceName

Purpose

Description

Characteristics

Examples

See Also

Specify name of currently selected video source

The SelectedSourceName property specifies the name of the video
source object from which the video input object acquires data. The name
is specified as a string. By default, the video input object selects the
first available video source object stored in the Source property.

The toolbox defines a video source as one or more hardware inputs
that are treated as a single entity. For example, hardware supporting
multiple RGB sources, each of which is made up of three physical
connections (red-green-blue), is treated as a single video source object.

Access Read only while running

Data type | String

Values The video input object assigns a name to each video

source object it creates. Names are defined at object
creation time and are vendor specific.

By default, the toolbox uses the first available source
name.

To see a list of all available sources, create a video input object.
vid = videoinput('matrox');
Use the set function to view a list of all available video source objects.

src_names = set(vid, 'SelectedSourceName');

Functions

set

Properties

Source

15-35

Source

Purpose

Description

Indicate video source objects associated with video input object

The Source property is a vector of video source objects that represent
the physical data sources connected to a device. When a video input
object is created, the toolbox creates a vector of video source objects
associated with the video input object.

Each video source object created is provided a unique source name. You
can use the source name to select the desired acquisition source by
configuring the SelectedSourceName property of the video input object.

A video source object’s name is stored in its SourceName property. If a
video source object’s SourceName is equivalent to the video input object’s
SelectedSourceName, the video source object’s Selected property has
a value of 'on'.

The video source object supports a set of common properties, such as
SourceName. Each video source object can also support device-specific
properties that control characteristics of the physical device such as
brightness, hue, and saturation. Different image acquisition devices
expose different sets of properties.

A video source is defined to be a collection of one or more physical data
sources that are treated as a single entity. For example, hardware
supporting multiple RGB sources, each of which is made up of three
physical connections (red-green-blue), is treated as a single video source
object.

The Source property encapsulates one or more video sources. To
reference a video source, you use a numerical integer to index into the
vector of video source objects.

Characteristics A coqs Tfamd] ol

15-36

Data type | Vector of video source objects

Values Defined at object creation time

Source

Examples Create an image acquisition object.

vid = videoinput('matrox');

To access all the video source objects associated with a video input
object, use the Source property of the video input object. (To view only
the currently selected video source object, use the getselectedsource
function.)

sources = vid.Source;
src = sources(1);

To view the properties of the video source object src, use the get
function.

get(src)
General Settings:
Parent = [1x1 videoinput]
Selected = on
SourceName = CH1
Tag =
Type = videosource

Device Specific Properties:
InputFilter = lowpass

UserOutputBit3 = off

UserOutputBit4 = off

XScaleFactor = 1

YScaleFactor = 1
See Also Functions

videoinput, getselectedsource

Properties

SelectedSourceName

15-37

SourceName

Purpose

Description

Characteristics

See Also

15-38

Indicate name of video source object

The SourceName property indicates the name of a video source object.

SourceName is one of the values in the video input object’s
SelectedSourceName property.

Access Read only

Data type | String

Values Defined at object creation time
Functions
getselectedsource
Properties

SelectedSourceName, Source

StartFcn

Purpose

Description

Characteristics

See Also

Specify MATLAB file executed when start event occurs

The StartFcn property specifies the MATLAB file function to execute
when a start event occurs. A start event occurs immediately after you
issue the start command.

The StartFcn callback executes synchronously. The toolbox does not
set the object’s Running property to 'on' until the callback function
finishes executing. If the callback function encounters an error, the
object never starts running.

Start event information is stored in the EventLog property.

Access Read/write

Data type String, function handle, or cell array

Values The default value is an empty matrix ([]).
Properties

EventLog, Running

15-39

StopFcn

Purpose Specify MATLAB file executed when stop event occurs

Description The StopFcn property specifies the MATLAB file function to execute
when a stop event occurs. A stop event occurs immediately after you
issue the stop command.

The StopFcn callback executes synchronously. Under most
circumstances, the image acquisition object will be stopped and the
Running property will be set to 'off' by the time the MATLAB file
completes execution.

Stop event information is stored in the EventLog property.

Characteristics 5ccess Read/write
Data type String, function handle, or cell array
Values The default value is an empty matrix ([]).
See Also Properties

EventLog, Running

15-40

Tag

Purpose Specify descriptive text to associate with image acquisition object

Description The Tag property specifies any descriptive text that you want to
associate with an image acquisition object.

The Tag property can be useful when you are constructing programs that
would otherwise need to define the image acquisition object as a global
variable, or pass the object as an argument between callback routines.

You can use the value of the Tag property to search for particular image
acquisition objects when using the imagfind function.

Characteristics 5cceqs Read/Write
Data type String
Values Any text string
See Also Functions
imaqfind

15-41

Timeout

Purpose Specify how long to wait for image data

Description The Timeout property specifies the amount of time (in seconds) that the
getdata and getsnapshot functions wait for data to be returned. The
Timeout property is only associated with these blocking functions. If
the specified time period expires, the functions return control to the
MATLAB command line.

A timeout is one of the conditions for stopping an acquisition. When a
timeout occurs, and the object is running, the MATLAB file function
specified by ErrorFcn is called.

Note The Timeout property is not associated with hardware timeout

conditions.
Characteristics 5ccess Read only while running
Data type double
Values Any positive integer. The default value is 10 seconds.
See Also Functions

getdata, getsnapshot

Properties

EventLog, ErrorFcn

15-42

TimerFcn

Purpose

Description

Characteristics

See Also

Specify MATLAB file callback function to execute when timer event

occurs

The TimerFcn property specifies the MATLAB file callback function to
execute when a timer event occurs. A timer event occurs when the time
period specified by the TimerPeriod property expires.

The toolbox measures time relative to when the object is started with
the start function. Timer events stop being generated when the image
acquisition object stops running.

Note Some timer events might not be processed if your system is
significantly slowed or if the TimerPeriod value you specify is too small.

Access

Read/write

Data type

String, function handle, or cell array

Values

The default value is an empty matrix ([]).

Functions

start, stop

Properties

TimerPeriod

15-43

TimerPeriod

Purpose

Description

Characteristics

See Also

15-44

Specify number of seconds between timer events

The TimerPeriod property specifies the amount of time, in seconds,
that must pass before a timer event is triggered.

The toolbox measures time relative to when the object is started with
the start function. Timer events stop being generated when the image
acquisition object stops running.

Note Some timer events might not be processed if your system is
significantly slowed or if the TimerPeriod value you specify is too small.

Access Read only while running
Data type double
Values Any positive value. The minimum value is 0.01
seconds. The default value is 1 (second).
Functions
start, stop
Properties

EventLog, TimerFcn

TriggerCondition

Purpose Indicate required condition before trigger event occurs

Description The TriggerCondition property indicates the condition that must be
met, via the TriggerSource, before a trigger event occurs. The trigger
conditions that you can specify depend on the value of the TriggerType

property.

TriggerType Value | Conditions Available

"hardware' Device-specific.

(if available for your | For example, some Matrox hardware supports

device) conditions such as 'risingEdge' and
'fallingEdge'. Use the triggerinfo function
to view a list of valid values to use with your
image acquisition hardware.

‘immediate’ ‘none’

‘manual’ ‘none’

You must use the triggerconfig function to set the value of this

property.
Characteristics Accegs Read only. Use the triggerconfig function to set
the value of this property.
Data type String
Values Device specific. Use the triggerinfo function to
view a list of valid values to use with your image
acquisition hardware.
See Also Functions

trigger, triggerconfig, triggerinfo

15-45

TriggerCondition

Properties

TriggerSource, TriggerType

15-46

TriggerFcn

Purpose

Description

Characteristics

See Also

Specify MATLAB file callback function to execute when trigger event
occurs

The TriggerFcn property specifies the MATLAB file callback function
to execute when a trigger event occurs. The toolbox generates a trigger
event when a trigger is executed based on the configured TriggerType,
and data logging is initiated.

Under most circumstances, the MATLAB file callback function is not
guaranteed to complete execution until sometime after the toolbox sets
the Logging property to 'on'.

Trigger event information is stored in the EventLog property.

Access Read/write
Data type String, function handle, or cell array
Values The default value is an empty matrix ([]).
Functions
trigger
Properties

EventLog, Logging

15-47

TriggerFrameDelay

Purpose
occurs

Description

Specify number of frames to skip before acquiring frames after trigger

The TriggerFrameDelay property specifies the number of frames to

skip before acquiring frames after a trigger occurs. The object waits
the specified number of frames after the trigger before starting to log

frames.

In this figure, the TriggerFrameDelay is set to 5, so the object lets five
frames pass before starting to acquire frames. The number of frames
captured is defined by the FramesPerTrigger property.

Start object;
video stream
begins.

Trigger
QU

— Trigger FrameDelay=5 =

Logging
begins.

Aaquisition

shaps.

—FramesPerlrigoer=h —-

h

F1 |F2 [F3

F4

ki

Fé

F

F

F|Fa (A1

Fl

ki

F4

Toalhox bgs frames

fo buffer.

¥
A0 (FA1

Fi

F1i

Memary buffer

Video stream . . >

Characteristics A coqs

Read only while running

Data type

double

Values

Any integer. The default value is 0 (zero).

See Also Functions

trigger

15-48

TriggerFrameDelay

Properties

FramesPerTrigger

15-49

TriggerRepeat

Purpose Specify number of additional times to execute trigger

Description The TriggerRepeat property specifies the number of additional times
you want the object to execute a trigger. This table describes the
behavior for several typical TriggerRepeat values.

Value Behavior

0 (default) Execute the trigger once when the trigger condition
is met.

Any positive Execute the trigger the specified number of

integer additional times when the trigger condition is met.

Inf Keep executing the trigger every time the trigger
condition is met until the stop function is called
O an error occurs.

To determine how many triggers have executed, check the value of the
TriggersExecuted property.

Note If the FramesPerTrigger property is set to Inf, the object ignores
the value of the TriggerRepeat property.

Characteristics 5ccess Read only while running

Data type double

Values Any nonnegative integer. The default value is 0 (zero).
See Also Functions

stop, trigger

Properties

FramesPerTrigger, TriggersExecuted, TriggerType

15-50

TriggersExecuted

Purpose

Description

Characteristics

See Also

Indicate total number of executed triggers

The TriggersExecuted property indicates the total number of triggers
that the video input object has executed.

Access

Read only

Data type

double

Values

Any nonnegative integer. The default value is 0 (zero).

Functions

trigger

Properties

EventLog

15-51

TriggerSource

Purpose

Description

Characteristics

See Also

15-52

Indicate hardware source to monitor for trigger conditions

The TriggerSource property indicates the hardware source the image
acquisition object monitors for trigger conditions. When the condition
specified in the TriggerCondition property is met, the object executes
the trigger and starts acquiring data.

You use the triggerconfig function to specify this value. The value of
the TriggerSource property is device specific. You specify whatever
mechanism a particular device uses to generate triggers.

For example, for Matrox hardware, the TriggerSource property could
have values such as 'Port0' or 'Port1'. Use the triggerinfo function
to view a list of values that are valid for your image acquisition device.

You must use the triggerconfig function to set the value of this
property.

Note The TriggerSource property is only used when the TriggerType
property is set to 'hardware'.

Access Read only. Use the triggerconfig function to set the
value of this property.

Data type String

Values Device-specific. Use the triggerinfo function to get a
list of valid values.

Functions

trigger, triggerconfig, triggerinfo

Properties

TriggerCondition, TriggerType

TriggerType

Purpose Indicate type of trigger used by video input object

Description The TriggerType property indicates the type of trigger used by the
video input object. Triggers initiate data acquisition.

You use the triggerconfig function to specify one of the following
values for this property.

Trigger Type

Description

"hardware'
(if available for
your device)

Trigger executes when a specified condition

is met. You specify the condition using the
TriggerCondition property and you specify the
hardware source to monitor for the condition

in the TriggerSource property. You use the
triggerconfig function to set the values of
these properties.

"immediate'

Trigger executes immediately after you call the
start function.

'manual’

Trigger executes immediately after you call the
trigger function.

Characteristics Default value is enclosed in braces ({}).

Access Read only. Use the triggerconfig function to
set the value of this property.
Data type String
Values ['hardware' | {'immediate'} | 'manual']
The 'hardware' option is only included for
devices that support hardware triggers.
See Also Functions

trigger, triggerconfig, triggerinfo

15-53

TriggerType

Properties

TriggerCondition, TriggerSource

15-54

Type

Purpose Identify type of image acquisition object

Description The Type property identifies the type of image acquisition object. An
image acquisition object can be either one of two types:

® Video input object

® Video source object

Characteristics A coqs

Read only

Data type String

Values ['videoinput' | 'videosource'] Defined at
object creation time

Examples vid = videoinput('winvideo',1)
get(vid, 'Type')
ans =
videoinput

This example gets the type of a video source object.

src = getselectedsource(vid);
get(src, 'type')

ans =

videosource

See Also Functions

getselectedsource, videoinput

15-55

UserData

Purpose Store data to associate with image acquisition object

Description The UserData property specifies any data that you want to associate
with an image acquisition object.

Note The object does not use the data in UserData directly. However,
you can access the data by using the get function or by referencing the
property as you would a field in a MATLAB structure.

Characteristics A.coqs Read/Write

Data type | Any

Values User-defined

See Also Functions
get

15-56

VideoFormat

Purpose Specify video format or name of device configuration file

Description The VideoFormat property specifies the video format used by the
image acquisition device or the name of a device configuration file,
depending on which you specified when you created the object using
the videoinput function.

Image acquisition devices typically support multiple video formats.
When you create a video input object, you can specify the video format
that you want the device to use. If you do not specify the video format
as an argument, the videoinput function uses the default format. Use
the imaghwinfo function to determine which video formats a particular
device supports and find out which format is the default.

As an alternative, you can specify the name of a device configuration
file, also known as a camera file or digitizer configuration format (DCF)
file. Some image acquisition devices use these files to store device
configuration information. The videoinput function can use this file to
determine the video format and other configuration information.

Use the imaghwinfo function to determine if your device supports
device configuration files.

Characteristics A coqs el @il
Data type String
Values Device-specific. The example describes how to get a
list of all the formats supported by a particular image
acquisition device.
Examples To determine the video formats supported by a device, check the

SupportedFormats field in the device information structure returned
by imaghwinfo.

info

info

imaghwinfo('winvideo')

15-57

VideoFormat

AdaptorDl1lName:
AdaptorDllVersion:
AdaptorName:
DevicelDs:
DeviceInfo:

info.DevicelInfo

ans =

DefaultFormat:
DeviceFileSupported:
DeviceName:
DevicelD:
ObjectConstructor:
SupportedFormats:

See Also Functions

imaghwinfo, videoinput

15-58

[1x73 char]
‘2.1 (R2007a)'
'winvideo'
{[11}

[1x1 struct]

"RGB555_128x96'"

0

"IBM PC Camera'

1

‘videoinput ('winvideo’
{1x34 cell}

VideoResolution

Purpose

Description

Characteristics

See Also

Indicate width and height of incoming video stream

The VideoResolution property is a two-element vector indicating
the width and height of the frames in the incoming video stream.
VideoResolution is specified as

[Width Height]

Width is measured in pixels and height is measured in rows.

Note You specify the video resolution when you create the video input
object, by passing in the video format argument to the videoinput
function. If you do not specify a video format, the videoinput function
uses the default video format. Use the imaghwinfo function to
determine which video formats a particular device supports and find
out which format is the default.

Access Read only

Data type Vector of doubles

Values Defined by video format
Functions

imaghwinfo, videoinput

Properties

ROIPosition, VideoFormat

15-59

VideoResolution

15-60

Block Reference

From Video Device

16-2

Purpose
Library

Description

Acquire live image data from image acquisition device

Image Acquisition Toolbox

R
Colar Dewvice Colar Device
RGE_NTSC 3 R&B_MNTSC GE
inputi inputi
B
Configured with one port Configured with 2 ports

The From Video Device block lets you acquire image and video data
streams from image acquisition devices, such as cameras and frame
grabbers, in order to bring the image data into a Simulink model. The
block also lets you configure and preview the acquisition directly from
Simulink.

The From Video Device block opens, initializes, configures, and controls
an acquisition device. The opening, initializing, and configuring occur
once, at the start of the model’s execution. During the model’s run
time, the block buffers image data, delivering one image frame for each
simulation time step.

The block has no input ports. You can configure the block to have
either one output port, or three output ports corresponding to the
uncompressed color bands, such as red, green, and blue, or Y, Cb, Cr.
The previous figure shows both configurations.

Other Supported Features

The From Video Device block supports the use of Simulink Accelerator
mode. This feature speeds up the execution of Simulink models.

The From Video Device block supports the use of model referencing.
This feature lets your model include other Simulink models as modular
components.

From Video Device

Code
Generation

For more information on these features, see the Simulink
documentation.

The From Video Device block supports the use of code generation along
with the packNGo function to group required source code and dependent
shared libraries. See the next section.

Note For an in-depth example of using this block, see Using the From
Video Device Block in Simulink. To see a demo of using this block,

go to the Demos tab in the Help browser under Toolboxes > Image
Acquisition.

The From Video Device block supports the use of code generation. You
can generate code from the block. This enables models containing the
From Video Device block to run successfully in Accelerator, Rapid
Accelerator, External, and Deployed modes.

Code Generation with the Simulink Coder

You can use the Image Acquisition Toolbox, Simulink Coder, and
Embedded Coder™ products together to generate code (on the host end)
that you can use to implement your model for a practical application.
For more information on code generation, see “Program Building,
Interaction, and Debugging”.

Shared Library Dependencies

The From Video Device block generates code with limited portability.
The block uses precompiled shared libraries, such as DLLs, to support
1/0 for specific types of devices. The Simulink Coder software provides
functions to help you set up and manage the build information for your
models. One of the Build Information functions that Simulink Coder
provides is packNGo. This function allows you to package model code
and dependent shared libraries into a zip file for deployment. The
target system does not need to have MATLAB installed but it does need
to be supported by MATLAB.

16-3

From Video Device

16-4

Dialog
Box

The block supports use of the packNGo function. Source-specific
properties for your device are honored when code is generated. The
generated code compiles with both C and C++ compilers.

To set up packNGo:

set_param(gcs, 'PostCodeGenCommand', 'packNGo(buildInfo)');

In this example, gcs is the current model that you wish to build.
Building the model creates a zip file with the same name as model
name. You can move this zip file to another machine and the source
code in the zip file can be built to create an executable which can be
run independent of MATLAB and Simulink. For more information on
packNGo, see packNGo.

Note The From Video Device block supports the use of Simulink Rapid
Accelerator mode and code generation on Windows platforms. Code
generation is also supported on Linux, but Rapid Accelerator mode is
not.

Note If you get a “Device in use” error message when using the block
with certain hardware, such as Matrox, close any programs that are
using the hardware, and then try using the block again.

Note On Linux platforms, you need to add the directory where you
unzip the libraries to the environment variable LD_LIBRARY_PATH.

In the Source Block Parameters dialog box, the options that appear are
dependent on the device you are using. The first diagram illustrates
the fields that may appear if your device supports camera files and
hardware triggering.

From Video Device

=] source Block Parameters: From Yideo Device

— From %ideo Device

Acquire live image data from an image acquizsition device.

Yideo source: I CH1
v Enable hardware tiggering

—Parameters
Device: matrox 1 [Genesis]
Yideo format; I From camera file j
Camera file: Iu:u:ir.u:h:f Browse. ..

LI Edit properties...

Trigaer configuratian: I digitalT rigger/fallingkE dae ;I

ROl position [1, o, height, width]: I[EI 0576 VB8]

Preview. . |

Block zample time: |1 £25

[ata type: I zingle ;I

ok Cancel | Help

16-5

From Video Device

16-6

The second diagram illustrates the options that may appear if your
device supports using either one output port or multiple output ports
for the color bands (the Ports mode option). Ports mode is visible if the
selected device and format settings can output color data.

m Source Block Parameters: From Yideo Device |

—From ideo Device

Acquire ive image data from an image acquizition device.

—Parameters
Device: deam 1 [CE454-050 +1.0]
Viden fomat: | v422_540x480 =l
Yideo zource: I inpLtl j Edit properties. ..

ROl pogition [, c. height, width]; I[EI 0 480 540]

Preview. .. |

Block sample time: I'I fan

Portg mode: I One multidimenzional sighal ;I
Drata type: I zihgle ;I
ak. Cancel | Help |

The following fields appear in the Source Block Parameters dialog
box. Some fields may not appear, as they are device dependent. If
your selected device does not support a feature, it may not appear in
the dialog box.

Device
The image acquisition device to which you want to connect. The
items in the list vary, depending on which devices you have
connected to your system. All video capture devices supported

From Video Device

by the Image Acquisition Toolbox software are supported by the
block.

Video format
Shows the video formats supported by the selected device. This list
varies with each device. If your device supports the use of camera
files, From camera file will be one of the choices in the list.

Camera file
This option only appears if you select a device that supports
camera files. You can select From camera file from the Video
format field, and enter the path and file name, or use the Browse
button to locate the file.

Video source
The available input sources for the specified device and format.
You can use the Edit properties button to edit the source
properties. That will open the Property Inspector.

Edit properties button
Edits video source device-specific properties, such as brightness
and contrast. It opens the Property Inspector. The properties
that are listed vary be device. Properties that can be edited
are indicated by a pencil icon or a drop-down list in the table.
Properties that are grayed out cannot be edited. When you close
the Property Inspector, your edits are saved.

Enable hardware triggering
This option only appears if the selected device supports hardware
triggering. Select the check box to enable hardware triggering.
Once enabled, you can select the Trigger configuration.

Trigger configuration
This option only appears if the selected device supports
hardware triggering. Check the Enable hardware triggering
box to enable it. Once enabled, you can select the Trigger
configuration. The configuration choices are listed by trigger
source/trigger condition. For example, TTL/fallingEdge means
that TTL is the trigger source and the falling edge of the signal is
the condition that triggers the hardware.

16-7

From Video Device

16-8

ROI position

Use this field to input a row vector that specifies the region of
acquisition in the video image. The format is [row, column, height,
width]. The default values for row and column are 0. The default
values for height and width are set to the maximum allowable
value, indicated by the video format’s resolution. Therefore you
only need to change the values in this field if you do not want

to capture the full image size.

Preview button

Preview the video image. It opens the Video Preview window that
is part of the Image Acquisition Toolbox software. If you change
something in the Source Block Parameters dialog box while the
preview is running, the image will adjust accordingly. This lets
you set up your image acquisition to the way you want it to be
acquired by the block when you run the model.

Block sample time

Specify the sample time of the block during the simulation. This
is the rate at which the block is executed during simulation. The
default is 1/30.

Note The block sample time does not set the frame rate on the
device that is used in simulation. Frame rate is determined by
the video format specified (standard format or from a camera
file). Some devices even list frame rate as a device-specific source
property. Frame rate is not related to the Block sample time
option in the dialog. Block sample time defines the rate at which
the block executes during simulation time.

Ports mode

Used to specify either a single output port for all color spaces, or
one port for each band (for example, R, G, B). When you select One
multidimensional signal, the output signal will be combined
into one line consisting of signal information for all color signals.
Select Separate color signals if you want to use three ports

From Video Device

corresponding to the uncompressed red, green, and blue color
bands. Note that some devices will use YCbCr for the separate
color signals.

Note The block acquires data in the default ReturnedColorSpace
setting for the specified device and format.

Data type
The image data type when the block outputs frames. This data
type indicates how image frames are output from the block to
Simulink. It supports all MATLAB data types and single is the
default.

16-9

Video Input (Obsolete)

Purpose

Library

Description

Wideo Input

R
&
B

Wideo Input

Dialog
Box

16-10

Connect to image acquisition device
Image Acquisition Toolbox

The Video Input block is obsolete. It may be removed in a future version
of the Image Acquisition Toolbox block library. Use the replacement
block From Video Device.

The Video Input block opens, initializes, configures, and controls an
acquisition device. The opening, initializing, and configuration occur
once, at the start of the model’s execution. During the model’s run-time,
the block buffers image data, delivering the latest image frame for each
simulation time step.

The block has no input ports. The block has three output ports,
corresponding to the uncompressed red, green, and blue color bands.

Note The Video Input block supports only Windows video devices
compatible with DirectX.

E! Source Block Parameters: ¥ideo Input x|

—Wideo Input

Arquire live image data fram a ‘Windows image acguisition device.
The device must be compatible with Microzoft's Direct technology.

—Parameters

Device name: [FNUEN S EIEE]

Input wideo format; I RGERRE 128436

Frame late:l S ipz

Lol Lef Lo

Output data t_l,Jpe:I double

0k I Cancel | Help |

Video Input (Obsolete)

Device name
The image acquisition device to which you want to connect. The
items in the list vary, depending on which devices you have
connected to your system.

Input video format
The video formats supported by the device. This list varies with
each device.

Frame rate
The speed at which frames are delivered to the block, expressed
as frames per second (fps).

Output data type
The image data type used when the block outputs frames. This
data type indicates how image frames are stored internally.

16-11

Video Input (Obsolete)

16-12

Examples

Use this list to find examples in the documentation.

A Examples

Fundamentals

Previewing

“Basic Image Acquisition Procedure” on page 1-6

“Determining the Device Adaptor Name” on page 4-2
“Determining the Device ID” on page 4-3

“Getting More Information About a Particular Device” on page 4-4
“Determining Supported Video Formats” on page 4-5

“Creating a Video Input Object” on page 4-9

“Specifying the Video Format” on page 4-11

“Using Device Configuration Files (Camera Files)” on page 4-13
“Specifying the Selected Video Source Object” on page 4-14
“Viewing the Values of Object Properties” on page 4-17
“Viewing the Properties of a Video Source Object” on page 4-18
“Viewing the Value of a Particular Property” on page 4-19
“Getting Information About Object Properties” on page 4-20
“Setting the Value of an Object Property” on page 4-20
“Starting and Stopping a Video Input Object” on page 4-23
“Deleting Image Acquisition Objects” on page 4-27

“Opening a Video Preview Window” on page 2-11

“Stopping the Preview Video Stream” on page 2-12

“Closing a Video Preview Window” on page 2-13

“Previewing Data in Custom GUIs” on page 2-13

“Performing Custom Processing of Previewed Data” on page 2-15

Image Acquisition Tool (GUI)

A-2

“Acquiring Data” on page 3-33

Acquiring Image Data

Acquiring Image Data

“Specifying Trigger Type, Source, and Condition” on page 5-5
“Example: Using an Immediate Trigger” on page 5-9

“Example: Using a Manual Trigger” on page 5-12

“Example: Using a Hardware Trigger” on page 5-14

“Example: Acquiring 100 Frames” on page 5-28

“Determining How Many Frames Are Available” on page 5-30
“Waiting for an Acquisition to Finish” on page 5-36

“Freeing Memory” on page 5-42

“Example: Logging Data to Disk Using an AVI File” on page 5-51

Working with Acquired Data

“Example: Acquiring 10 Seconds of Image Data” on page 6-5
“Viewing Frames in the Memory Buffer” on page 6-6

“Bringing a Single Frame into the Workspace” on page 6-10
“Determining the Dimensions of Image Data” on page 6-13
“Determining the Data Type of Image Frames” on page 6-16
“Specifying the Color Space” on page 6-17

“Example: Determining the Frame Delay Duration” on page 6-22

Events and Callbacks

“Using the Default Callback Function” on page 7-2
“Example: Accessing Data in the Event Log” on page 7-9
“Example: Writing a Callback Function” on page 7-13
“Example: Viewing a Sample Frame” on page 7-16
“Example: Monitoring Memory Usage” on page 7-17

A-3

A Examples

A

acquiring data 3-33
acquiring images
basic procedure 1-6
connecting to devices 4-1
overview 5-2
specifying a delay 5-33
specifying the amount 5-26
specifying the frame grab interval 5-27
specifying the timeout value 15-42
troubleshooting hardware 11-2
waiting for completion 5-36
Acquisition Parameters
Device Properties 3-13
Disk Logging 3-17
Frames Per Trigger 3-12
hardware triggering 3-21
Logging 3-16
Memory Logging 3-17
Number of Triggers 3-20
Region of Interest (ROI) 3-23
Trigger Type 3-20
Triggering 3-20
Acquisition Parameters tabs 3-11
adaptor kit
adding support of additional hardware 10-1
adaptor names
finding 4-15
adaptors
definition 4-2
adding hardware 3-9
application-defined data
using to specify update preview window
function 2-17
Audio Video Interleave (AVI) format
creating an AVTI file object 5-49
logging images to disk 5-45
writing to file from model 8-9
AVI file 3-17

Bayer demosaicing 15-2
BayerSensorAlignment property 15-2
block library

using 8-1
blurry frames 3-36

C

callback functions
as text string 7-15
creating 7-12
enabling and disabling 7-16
specifying 7-14
specifying as cell array 7-15
specifying as function handle 7-15
callback properties
list of 7-4
camcorders
support for 2-5
camera file 3-10
camera files 4-13
Carnegie Mellon University DCAM driver
installing 11-9
clear function 13-2
closepreview function 13-3
using 2-13
code generation 8-5
color spaces
of acquired image data 6-17
Coreco IFC devices
determining driver version 11-4
troubleshooting 11-3
Coreco Sapera devices
determining driver version 11-6
troubleshooting 11-5

D
DALSA Coreco IFC devices

Index-1

Index

determining driver version 11-4 Digital Camera (DCAM) specification
troubleshooting 11-3 support for 2-5
DALSA Coreco Sapera devices digital video
determining driver version 11-6 support for 2-5
troubleshooting 11-5 digitizer configuration format (DCF) files 4-13
dark frames 3-36 DirectX drivers
Data Translation devices finding version 11-31
troubleshooting 11-7 disk files
data type used by device logging image data to 5-45
finding 4-15 Disk Logging 3-17
DCAM DiskLogger property 15-6
support for 2-5 using 5-45
troubleshooting 11-8 DiskLoggerFrameCount property 15-8
DCAM driver disp function 13-5
installing and configuring 11-9 displaying images
DCAM trigger modes 5-18 after acquiring 6-19
debugging your hardware 11-39
imagsupport 11-39 E
delete function 13-4
deleting error events

definition 7-5
information returned 7-8
ErrorFcn 7-12

image acquisition objects 4-27
desktop user interface 3-2
device configuration files 4-13

device drivers ErrorFcn property 15-9

determining version 11-4 11-6 11-17 11-19 event structures 7-7

11-21 EventLog property 15-10

finding name and version 4-15 retrieving information from 7-9
device IDs events

finding 4-2 retrieving event information 7-7

of image acquisition devices 4-3 types of 7-4
device information structure EXPOTt. Data bl}tton 3-37

returned by imaghwinfo 4-4 exporting acquired data 3-37
device name exporting hardware configurations 3-43

finding 4-15 exporting to Motion JPEG 2000 file 3-37
Device Properties 3-13 exporting to VideoWriter file 3-37
DevicelD property 15-4 external triggers
DevicelInfo field 4-4 configured in camera files 4-13
devices example 5-14

adding support for 10-1 extracting image data 6-3

Index-2

Index

F

FireWire
image acquisition devices 2-2
Firewire IEEE 1394) Digital Camera (DCAM)
specification
support for 2-5
flushdata function 13-7
using 5-42
frame delay
specifying 15-48
frame grabbers 2-2
troubleshooting 11-2
troubleshooting DALSA Coreco TFC
devices 11-3
troubleshooting DALSA Coreco Sapera
devices 11-5
troubleshooting Data Translation
devices 11-7
frame memory limit
setting 5-40
frame rates
in example 6-5
relation to processing speed 2-8
FrameGrabInterval property 15-12
using 5-27
frames
determining dimensions of 6-13
determining how many have been
acquired 5-28
memory usage 5-40
specifying the number to acquire 5-26
frames acquired events
definition 7-5
example 7-17
information returned 7-8
Frames Per Trigger 3-12
FramesAcquired property 15-14
FramesAcquiredFcn 7-12
FramesAcquiredFcn property 15-15
FramesAcquiredFcnCount property 15-16

FramesAvailable property 15-17
using 5-30
FramesPerTrigger property 15-18
using 5-28
freeing memory
used for image frames 5-42
From Video Device block 16-2
using 8-1

G

generating code from the Simulink block 8-5
GenICam installation for GigE Vision
devices 9-12
get function 13-8
using 4-17
getdata function 13-9
specifying the timeout value 15-42
using 6-4
getselectedsource function 13-13
getsnapshot function 13-14
GigE Vision
device and driver installation 9-4
device setups 9-2
GenICam installation 9-12
Linux GenICam configuration 9-13
Linux network configuration 9-6
Mac GenICam configuration 9-14
Mac network configuration 9-7
network adaptor configuration 9-6
network configuration 9-3
software configuration 9-12
Windows GenICam configuration 9-12
Windows network configuration 9-6
GigE Vision devices 9-2
troubleshooting 11-22

H

Hamamatsu devices

Index-3

Index

troubleshooting 11-15 deleting 4-27
hardware triggering 3-21 determining the device ID 15-4
hardware triggers determining type of 15-55
configured in camera files 4-13 finding all existing objects 4-27
defined 5-8 starting 4-23
example 5-14 state 4-23
stopping 4-23
I types of 4-8
viewing all settable properties 4-20
IAT file 3-41 viewing properties 4-17
IEEE 1394 Image Acquisition Tool 3-1
troubleshooting DCAM driver 11-8 acquiring data 3-33
IEEE-1394 Acquisition Parameters tabs 3-11
image acquisition devices 2-2 adding new hardware 3-9
image acquisition Device Properties 3-13
basic procedure 1-6 Disk Logging 3-17
determining time of 6-21 exporting acquired data 3-37
gettin.g hardware information 4-2 exporting hardware configurations 3-43
overview 5-2 Frames Per Trigger 3-12
previewing the image 2-10 Hardware Browser 3-8
retrieving timing information 6-20 hardware triggering 3-21
setting up 2-7 IAT file 3-41
specifying a delay 15-48 Logging 3-16
specifying the timeout value 15-42 manual triggering 3-20
time-based acquisition 6-5 Memory Logging 3-17
using timers with 15-43 opening 3-2
image acquisition devices 2-2 Preview window 3-30
adaptors 4-2 previewing data 3-32
adding support for 10-1 Region of Interest (ROI) 3-23
connecting to 4-1 saving configurations 3-41
finding the device ID 4-2 selecting device 3-8
list of supported devices 2-5 selecting format 3-8
setting up 2-7 Triggering 3-20
troubleshooting 11-2 11-30 troubleshooting bad images 3-36
troubleshooting Hamamatsu devices 11-15 using a camera file 3-10
image acquisition objects Image Acquisition Tool desktop 3-2
associating data with 15-56 Image Acquisition Toolbox GUI 3-1 to 3-2
avoiding global variables 15-41 image data
conﬁguring properties 4-16 importing into a Simulink model 8-1
creating 4-8 image frames

Index-4

Index

bringing into the workspace 6-2 example 5-9
determining acquisition time 6-21 InitialTriggerTime property 15-19
determining dimensions of 6-13 using 6-20
memory usage 5-40 installation of GigE Vision devices and
image objects drivers 9-4
using as preview windows 2-13 islogging function 13-31
Image Processing Toolbox 1-3 2-4 isrunning function 13-33
images isvalid function 13-34
acquiring 5-2
color spaces of acquired data 6-17 L

determining dimensions of 6-13
determining how many are available 5-30

determining how many have been) ! !
acquired 5-28 Linux Video devices

extracting from memory 6-3 troubleshooting 11-33

logging to disk 5-45 load function 13-35

memory usage 5-40 Logging. 3-16

retrieving acquired images 6-2 logging image data

specifying how many to acquire 5-26 to disk 5-45

viewing acquired data 6-19 Logging property 15-21

waiting for an acquisition to complete 5-36 logging St?te
imaging boards 2-2 overview 5-2

troubleshooting 11-2 logging to AVI file 3-17
imaqcallback function logging to Motion JPEG 2000 file 3-17

using default callback function 7-2 logging to VideoWriter file 3-17

Linux DCAM devices
troubleshooting 11-35

imagfind function 13-16 LoggingMode property 15-22
using 4-27
imaghelp function 13-18 M

getting property information 4-20

imaghwinfo function 13-20 Macintosh DCAM devices

troubleshooting 11-37

using 4-2 . . .
) g . Macintosh Video devices
imagmem function 13-24 .
. troubleshooting 11-36
using 5-40

manual triggering 3-20
manual triggers
defined 5-8
example 5-12
Matrox devices
determining driver version 11-17
troubleshooting 11-16

imagmontage function 13-27
imaqgreset function 13-29
imagsupport function 11-39
imaqgtool 3-2

imaqtool function 13-30
immediate triggers

defined 5-8

Index-5

Index

Matrox MIL Configuration utility
using 11-17

memory buffer
determining number of frames in 5-30
emptying 5-42

Memory Logging 3-17

memory usage
monitoring 5-40

Microsoft DirectX
find version 11-31

Motion JPEG 2000 file 3-17 3-37

Motion JPEG 2000 format
logging images to disk 5-45

Name property 15-24

National Instruments devices
determining driver version 11-21
troubleshooting 11-20

native data type
finding 4-15

network adaptor configuration for GigE Vision
devices 9-6

network configuration for GigE Vision
devices 9-3

Number of Triggers 3-20

NumberOfBands property 15-25

o

obj2mfile function 13-36
opening Image Acquisition Tool 3-2
overloaded functions 12-5

P

Parent property 15-27
peekdata function 13-40
using 6-6
using before a trigger 6-8

Index-6

preview function 13-42
using 2-11
Preview window 3-30
previewing
closing the preview window 2-13
creating custom preview GUIs 2-13
opening the Video Preview window 2-11
performing custom processing 2-15
stopping the preview video stream 2-12
previewing data 3-32
Previewing property 15-28
properties
determining their value 4-19
getting information about 4-20
of image acquisition objects 4-16
propinfo function 13-46
getting property information 4-20

Q

QImaging devices
determining driver version 11-19
troubleshooting 11-18

refreshing hardware 3-9
region of interest (ROI)

specifying 15-30
Region of Interest (ROI) 3-23
ReturnedColorSpace property 15-29
ROIPosition property 15-30
Running property 15-32
running state

description of 4-23

S

save function 13-48
saving Image Acquisition Tool
configurations 3-41

Index

Selected property 15-33
SelectedSourceName property 15-35
selecting a device in the GUI 3-8
set function 13-49
using 4-20
software configuration for GigE Vision
devices 9-12
Source property 15-36
SourceName property 15-38
start events
callback function property 15-39
definition 7-5
information returned 7-8
start function 13-51
StartFcn 7-12
StartFcn property 15-39
stop events
callback function property 15-40
definition 7-6
information returned 7-8
stop function 13-53
StopFcn 7-12
StopFcn property 15-40
stoppreview function 13-54
synchronizing acquisition
example 5-14
system requirements
image acquisition 2-5

T

Tag property 15-41
television tuner boards
support for 2-5
time-based acquisition 6-5
Timeout property 15-42
timer events
definition 7-6
example 7-18
information returned 7-9

TimerFcn 7-12
TimerFcn property 15-43
TimerPeriod property 15-44
timers
specifying period of 15-44
specifying with image acquisition 15-43
timing of acquisition
retrieving 6-20
trigger events
definition 7-6
information returned 7-8
specifying callback function 15-47
trigger function 13-55
trigger modes
DCAM-specific 5-18
Trigger Type 3-20
TriggerCondition property 15-45
configuring 5-6
triggerconfig function 13-56
TriggerFcn 7-12
TriggerFcn property 15-47
TriggerFrameDelay property 15-48
using 5-33
triggerinfo function 13-59
Triggering 3-20
TriggerRepeat property 15-50
using 5-34
triggers
configuring 5-3
configuring repeating triggers 5-34
controlling acquisition parameters 5-25
DCAM-specific modes 5-18
determining execution time 6-20
hardware 5-14
immediate 5-9
manual 5-12
specifying properties 5-5
specifying the type 5-8
specifying when they occur 15-45
types of 5-8

Index-7

Index

TriggersExecuted property 15-51
TriggerSource property 15-52
configuring 5-6
TriggerType property 15-53
configuring 5-6
types of triggers 5-8
troubleshooting
DALSA Coreco IFC devices 11-3
DALSA Coreco Sapera 11-5
Data Translation devices 11-7
DCAM driver 11-8
GigE Vision devices 11-22
Hamamatsu devices 11-15
image acquisition hardware 11-2
Linux DCAM devices 11-35
Linux Video devices 11-33
Macintosh DCAM devices 11-37
Macintosh Video devices 11-36
Matrox devices 11-16
National Instruments devices 11-20
QImaging devices 11-18
Video Preview window 11-38
Windows Video devices 11-30
troubleshooting bad images 3-36
troubleshooting hardware 11-2
TV tuner boards
support for 2-5
Type property 15-55

V)

update preview window function
creating 2-16
specifying 2-17
USB
image acquisition devices 2-2
user interface 3-1
UserData property 15-56

Index-8

\"

vendor adaptors
definition 4-2
video
importing into a Simulink model 8-1
video cameras 2-2
setting up 2-7
troubleshooting 11-2
video formats
specifying 4-11
specifying with device configuration
files 4-13
Video Input block 16-10
video input objects
defined 4-8
getting information about 4-15
running state 15-32
starting 4-23
state 4-23
stopping 4-23
viewing current state 4-10
Video Preview window
closing 2-13
opening 2-11

stopping the preview video stream 2-12

troubleshooting 11-38
video source objects

array of 15-36

currently selected source 15-33

displaying list of 4-14

names of 15-38

relation to video input objects 4-8

specifying selected object 4-14
VideoFormat property 15-57
videoinput function 13-61

using 4-8
VideoResolution property 15-59
VideoWriter file 3-17 3-37
VideoWriter object

logging images to disk 5-45

Index

viewing images 6-19

w

wait function 13-64
using 5-36

waiting for an acquisition to complete 5-36
webcams

support for 2-5
winvideo adaptor

troubleshooting hardware 11-30

Index-9

	toc
	Getting Started
	Product Overview
	Introduction
	Installation and Configuration Notes
	The Image Processing Toolbox Software Required to Use the Image
	Related Products
	Supported Hardware
	Viewing Demos

	Image Acquisition Tool (GUI)
	Basic Image Acquisition Procedure
	Overview
	Step 1: Install Your Image Acquisition Device
	Step 2: Retrieve Hardware Information
	Determining the Adaptor Name
	Determining the Device ID
	Determining the Supported Video Formats

	Step 3: Create a Video Input Object
	Viewing the Video Input Object Summary

	Step 4: Preview the Video Stream (Optional)
	Step 5: Configure Object Properties (Optional)
	Types of Image Acquisition Objects
	Viewing Object Properties
	Setting Object Properties

	Step 6: Acquire Image Data
	Running the Example
	Image Data in the MATLAB Workspace

	Step 7: Clean Up

	Introduction
	Toolbox Components Overview
	Introduction
	Toolbox Components
	The Image Processing Toolbox Software Required to Use the Image
	The Image Acquisition Tool (GUI)
	Supported Devices

	Setting Up Image Acquisition Hardware
	Introduction
	Setting Up Frame Grabbers
	Setting Up Generic Windows Video Acquisition Devices
	Setting Up DCAM Devices
	Resetting Your Image Acquisition Hardware
	A Note About Frame Rates and Processing Speed

	Previewing Data
	Introduction
	Opening a Video Preview Window
	Stopping the Preview Video Stream
	Closing a Video Preview Window
	Previewing Data in Custom GUIs
	Performing Custom Processing of Previewed Data
	Creating the Update Preview Window Function
	Specifying the Update Preview Function

	Using the Image Acquisition Tool GUI
	The Image Acquisition Tool Desktop
	Opening the Tool
	Parts of the Desktop

	Getting Started with the Image Acquisition Tool
	Selecting Your Device in the Image Acquisition Tool
	Selecting a Device and Format
	Adding New Hardware
	Using a Camera File

	Setting Acquisition Parameters in the Image Acquisition Tool
	Using the Acquisition Parameters Pane
	Setting Frames Per Trigger
	Setting the Color Space
	Setting Device-Specific Parameters
	Logging Your Data
	Memory Logging
	Disk Logging

	Setting Up Triggering
	Selecting the Number of Triggers
	Selecting the Trigger Type

	Setting a Region of Interest
	Setting Region of Interest Manually
	Setting Region of Interest Interactively

	Restoring Default Parameters

	Previewing and Acquiring Data in the Image Acquisition Tool
	The Preview Window
	Previewing Data
	Acquiring Data
	If Images Are Blurry or Dark

	Exporting Data in the Image Acquisition Tool
	Saving Image Acquisition Tool Configurations
	Exporting Image Acquisition Tool Hardware Configurations to MATL
	Saving and Copying the Image Acquisition Tool Session Log
	About the Session Log
	Saving the Session Log
	Copying the Session Log

	Registering a Third-Party Adaptor in the Image Acquisition Tool

	Connecting to Hardware
	Getting Hardware Information
	Getting Hardware Information
	Determining the Device Adaptor Name
	Determining the Device ID
	Getting More Information About a Particular Device

	Determining Supported Video Formats

	Creating Image Acquisition Objects
	Types of Objects
	Video Input Objects
	Video Source Objects
	Creating a Video Input Object
	Viewing a Summary of a Video Input Object

	Specifying the Video Format
	Using a Video Format String
	Using Device Configuration Files (Camera Files)

	Specifying the Selected Video Source Object
	Getting Information About a Video Input Object

	Configuring Image Acquisition Object Properties
	About Image Acquisition Object Properties
	Viewing the Values of Object Properties
	Viewing the Properties of a Video Source Object

	Viewing the Value of a Particular Property
	Getting Information About Object Properties
	Setting the Value of an Object Property
	Viewing a List of All Settable Object Properties
	Setting Trigger Properties

	Starting and Stopping a Video Input Object
	Deleting Image Acquisition Objects
	Saving Image Acquisition Objects
	Using the save Command
	Using the obj2mfile Command

	Acquiring Image Data
	Data Logging
	Overview
	Trigger Properties

	Setting the Values of Trigger Properties
	About Trigger Properties
	Specifying Trigger Type, Source, and Condition
	Determining Valid Configurations
	Configuring Trigger Type, Source, and Condition Properties

	Specifying the Trigger Type
	Comparison of Trigger Types
	Example: Using an Immediate Trigger
	Example: Using a Manual Trigger
	Example: Using a Hardware Trigger
	Setting DCAM-Specific Trigger Modes
	Trigger Mode 0
	Trigger Mode 1
	Trigger Mode 2
	Trigger Mode 3
	Trigger Mode 4
	Trigger Mode 5
	Trigger Mode 14
	Trigger Mode 15

	Controlling Logging Parameters
	Data Logging
	Specifying Logging Mode
	Specifying the Number of Frames to Log
	Specifying a Noncontiguous Acquisition

	Determining How Much Data Has Been Logged
	Example: Acquiring 100 Frames

	Determining How Many Frames Are Available
	Delaying Data Logging After a Trigger
	Specifying Multiple Triggers

	Waiting for an Acquisition to Finish
	Using the wait Function
	Example: Blocking the Command Line Until an Acquisition Complete

	Managing Memory Usage
	Memory Usage
	Monitoring Memory Usage
	Modifying the Frame Memory Limit
	Freeing Memory

	Logging Image Data to Disk
	Logging Data to Disk Using VideoWriter
	Example: Logging Data to Disk Using VideoWriter
	Guidelines for Using a VideoWriter Object to Log Image Data

	Logging Data to Disk Using an AVI File
	Creating an AVI File Object for Logging
	Logging Grayscale Images Using an AVI File
	Guidelines for Using an AVI File Object to Log Image Data
	Closing the DiskLogger AVI file

	Example: Logging Data to Disk Using an AVI File

	Working with Acquired Image Data
	Image Acquisition Overview
	Bringing Image Data into the MATLAB Workspace
	Overview
	Moving Multiple Frames into the Workspace
	Example: Acquiring 10 Seconds of Image Data

	Viewing Frames in the Memory Buffer
	Bringing a Single Frame into the Workspace

	Working with Image Data in the MATLAB Workspace
	Understanding Image Data
	Determining the Dimensions of Image Data
	ROIs and Image Dimensions
	Example: Video Format and Image Dimensions

	Determining the Data Type of Image Frames
	Specifying the Color Space
	Viewing Acquired Data

	Retrieving Timing Information
	Introduction
	Determining When a Trigger Executed
	Determining When a Frame Was Acquired
	Getting the Relative Acquisition Time
	Getting the Absolute Acquisition Time

	Example: Determining the Frame Delay Duration

	Using Events and Callbacks
	Using the Default Callback Function
	Event Types
	Retrieving Event Information
	Introduction
	Event Structures
	Data Fields for Start, Stop, Frames Acquired, and Trigger Events
	Data Fields for Error Events
	Data Fields for Timer Events

	Example: Accessing Data in the Event Log

	Creating and Executing Callback Functions
	Introduction
	Creating Callback Functions
	Example: Writing a Callback Function

	Specifying Callback Functions
	Using a Text String to Specify Callback Functions
	Using a Cell Array to Specify Callback Functions
	Using Function Handles to Specify Callback Functions
	Specifying a Toolbox Function as a Callback
	Disabling Callbacks

	Example: Viewing a Sample Frame
	Example: Monitoring Memory Usage
	Creating the Memory Monitor Callback Function
	Running the Example

	Using the From Video Device Block in Simulink
	Simulink Image Acquisition Overview
	Opening the Block Library
	Using the imaqlib Command
	Using the Simulink Library Browser

	Using Code Generation
	Saving Video Data to a File
	Introduction
	Step 1: Open the Image Acquisition Toolbox Library
	Step 2: Open a Model or Create a New Model
	Step 3: Drag the From Video Device Block into the Model
	Step 4: Drag Other Blocks to Complete the Model
	Step 5: Connect the Blocks
	Step 6: Specify From Video Device Block Parameter Values
	Step 7: Run the Simulation

	Configuring GigE Vision Devices
	Types of Setups
	Network Hardware Configuration Notes
	Installation of GigE Vision Cameras and Drivers
	Network Adaptor Configuration Notes
	Windows
	Linux
	Mac

	Software Configuration
	Setting Preferences
	Troubleshooting

	Adding Support for Additional Hardware
	Support for Additional Hardware

	Troubleshooting
	Troubleshooting Overview
	DALSA Coreco IFC Hardware
	Troubleshooting DALSA Coreco IFC Devices
	Determining the Driver Version for DALSA Coreco IFC Devices

	DALSA Coreco Sapera Hardware
	Troubleshooting DALSA Coreco Sapera Devices
	Determining the Driver Version for DALSA Coreco Sapera Devices

	Data Translation Hardware
	DCAM IEEE 1394 (FireWire) Hardware on Windows
	Troubleshooting DCAM IEEE 1394 Hardware on Windows
	Installing the CMU DCAM Driver on Windows
	Installing the Driver

	Running the CMU Camera Demo Application on Windows

	Hamamatsu Hardware
	Matrox Hardware
	Troubleshooting Matrox Devices
	Determining the Driver Version for Matrox Devices

	QImaging Hardware
	Troubleshooting QImaging Devices
	Determining the Driver Version for QImaging Devices

	National Instruments Hardware
	Troubleshooting National Instruments Devices
	Determining the Driver Version for National Instruments Devices

	GigE Vision Hardware
	Troubleshooting GigE Vision Devices on Windows
	Troubleshooting GigE Vision Devices on Linux
	Troubleshooting GigE Vision Devices on Mac

	Windows Video Hardware
	Troubleshooting Windows Video Devices
	Determining the Microsoft DirectX Version

	Linux Video Hardware
	Troubleshooting Linux Video Devices

	Linux DCAM IEEE 1394 Hardware
	Troubleshooting Linux DCAM Devices

	Macintosh Video Hardware
	Troubleshooting Macintosh Video Devices

	Macintosh DCAM IEEE 1394 Hardware
	Troubleshooting Macintosh DCAM Devices

	Video Preview Window Troubleshooting
	Contacting MathWorks and Using the imaqsupport Function

	Function Reference
	General-Purpose Objects
	Triggering
	Data
	Tools
	Getting Command-Line Function Help

	Functions — Alphabetical List
	Property Reference
	Video Input Objects
	General
	Callback
	Triggering
	Acquisition Source

	Video Source Objects

	Properties — Alphabetical List
	Block Reference
	Examples
	Fundamentals
	Previewing
	Image Acquisition Tool (GUI)
	Acquiring Image Data
	Working with Acquired Data
	Events and Callbacks

	Index

	tables
	Comparison of Trigger Types
	Frame Metadata
	Events and Callback Function Properties

